Can Retracted Social Science Articles Be Distinguished from Non-Retracted Articles by Some of the Same Authors, Using Benford’s Law or Other Statistical Methods?
Abstract
:1. Introduction
2. Methods
2.1. Sample
2.2. Measurement
2.2.1. Summary Descriptives
2.2.2. Individual Measures of Anomalies
2.2.3. Hand Calculation
2.2.4. Excess Identical Unstandardized Regression Coefficients {Betas} or Standard Errors
2.2.5. Shortage/Excess of Zeroes in Terminal Digits of Regression Coefficients or Standard Errors
2.2.6. Mathematically Incorrect Standard Deviations for Binary Variables
2.2.7. Benford’s Law Deviations
2.3. Creation of Ordinal Anomaly Scales
2.3.1. Missing Data
2.3.2. Hand Calculation, Regression Coefficients, and Standard Errors
2.3.3. Shortage/Excess of Zeroes
2.3.4. Binary Variable Standard Deviations Relative to Their Means
2.3.5. Benford’s Law Measurement
2.3.6. Total Anomalies Scale
2.3.7. Anomaly Severity Scale
2.4. Analyses
3. Results
3.1. Descriptive Data and Retraction Status
3.2. Comparing Retracted and Control Articles’ Data
3.3. Measurement
3.3.1. Anomaly Percentage Values
3.3.2. Anomaly Ordinal Values
3.3.3. Total Anomalies Scale
3.3.4. Anomaly Severity Scale
3.4. Retraction Status and Anomalies
3.4.1. Hypothesis 1
3.4.2. Hypothesis 2
3.4.3. Hypothesis 3
3.4.4. Additional within Control Group Analysis
3.4.5. Discriminant Analysis for Sensitivity and Specificity
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Example of Hand Calculation versus Computer Generation: Predicting the Total Anomaly Scale from Several Independent Variables
Independent | B | SE | t Values | β | p | |
Variable | COMP | HC | ||||
Year Published | 1.212 | 1.187 | 1.021 | 1.021 | 0.748 | 0.344 |
Grant Supported | 7.04 | 6.914 | 1.018 | 1.018 | 0.373 | 0.335 |
Total Pages Used in Articles | 0.469 | 0.418 | 1.122 | 1.122 | 0.347 | 0.291 |
Google Citation Count | 0.05 | 0.046 | 1.096 | 1.087 | 0.85 | 0.301 |
Total Number of Authors Per Article | 0.504 | 2.629 | 0.192 | 0.192 | 0.076 | 0.852 |
F(5, 9) = 0.557, p = 0.731, R Square = 0.236 | ||||||
COMP = computer-generated t value; HC = hand-calculated t value. All values are computer-generated except for the HC t value. |
Appendix B. Within Control Group Comparisons on Beta and SE Rates, Anomalies, and Severities
Variables | Control (N = 6) | Control (N = 2) | d | t | df | p | ||
X | SD | X | SD | |||||
Beta Rate | 0.02 | 0.04 | 0.14 | 0.00 | 3.62 | 7.19 | 4.14 | 0.002 |
Beta Anomaly | 0.50 | 0.84 | 2.00 | 0.00 | 1.96 | 2.41 | 6.00 | 0.053 |
Beta Severity | 0.08 | 0.13 | 0.25 | 0.00 | 1.41 | 3.16 | 5.00 | 0.025 |
SE Rate | 0.05 | 0.05 | 0.46 | 0.10 | 5.97 | 5.39 | 1.30 | 0.076 |
SE Anomaly | 1.00 | 0.89 | 3.00 | 0.00 | 2.45 | 3.00 | 6.00 | 0.024 |
SE Severity | 0.17 | 0.13 | 0.50 | 0.00 | 2.83 | 6.33 | 5.00 | 0.001 |
All t-tests feature two-tailed significance levels. The t-test for beta anomaly had we used the equal variance t-test, t(5) = 4.39 (p = 0.007); we used the unequal variance t-test because in the Levene test for homogeneity of variance’s p = 0.07. Because in the Levene test p = 0.004 for SE Rate, we reported the unequal variance t-test. Had we used the equal variance t-test, t(4) = 6.89 (p = 0.002). One-way analysis of variance tests, including the retracted article scores, were all significant, p < 0.005. Comparing the six control articles versus the retracted articles on the above six variables, all t-tests were significant, p < 0.005. Comparing the two control articles versus the retracted articles on the above six variables, all but SE anomaly were significant, p < 0.05. |
References
- Page, G.D.; Columb, M.O. Fake News, Zombie Papers, and Fabricated Evidence: A Thoroughly Modern Pandemic? Eur. J. Anaesthesiol. 2022, 39, 302–304. [Google Scholar] [CrossRef]
- Bordewijk, E.M.; Li, W.; Van Eekelen, R.; Wang, R.; Showell, M.; Mol, B.W.; Van Wely, M. Methods To Assess Research Misconduct in Health-Related Research: A Scoping Review. J. Clin. Epidemiol. 2021, 136, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Boetto, E.; Golinelli, D.; Carullo, G.; Fantini, M.P. Frauds in Scientific Research and How to Possibly Overcome Them. J. Med. Ethics 2021, 47, e19. [Google Scholar] [CrossRef]
- Yeo-The, N.S.L.; Tang, B.L. Sustained Rise in Retractions in the Life Sciences Literature During the Pandemic Years 2020 and 2021. Publications 2022, 10, 29. [Google Scholar] [CrossRef]
- Fanelli, D. How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta- Analysis of Survey Data. PLoS ONE 2009, 4, e5738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanelli, D. Why Growing Retractions Are (Mostly) a Good Sign. PLoS Med. 2013, 10, e1001563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartgerink, C.H.J.; Wicherts, J.M. Research Practices and Assessment of Research Misconduct. Sci. Open Res. 2016, 1–10. [Google Scholar] [CrossRef]
- Horton, J.; Kumar, D.K.; Wood, A. Detecting Academic Fraud Using Benford’s Law: The Case of Professor James Hunton. Res. Policy 2020, 49, 104084. [Google Scholar] [CrossRef]
- Steen, R.G.; Casadevall, A.; Fang, F.C. Why Has the Number of Scientific Retractions Increased? PLoS ONE 2013, 8, e68397. [Google Scholar] [CrossRef]
- Stroebe, W.; Postmes, T.; Spears, R. Scientific Misconduct and the Myth of Self-Correction in Science. Perspect. Psychol. Sci. 2012, 7, 670–688. [Google Scholar] [CrossRef] [Green Version]
- Wiedermann, C.J. Inaction Over Retractions of Identified Fraudulent Publications: Ongoing Weakness in the System of Scientific Self-Correction. Account. Res. 2018, 25, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.M.; Casadevall, A.; Steen, R.G.; Fang, F.C. Financial Costs and Personal Consequences of Research Misconduct Resulting in Retracted Publications. eLife 2014, 3, e02956. [Google Scholar] [CrossRef] [PubMed]
- Poutoglidou, F.; Stavrakas, M.; Tsetsos, N.; Poutoglidis, A.; Tsentemeidou, A.; Fyrmpas, G.; Karkos, P.D. Fraud and Deceit in Medical Research: Insights and Current Perspectives. Voices Bioeth. 2022, 8, 1–6. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Hossain, M.A. Data Falsification and Questions on Academic Integrity. Account. Res. 2019, 26, 108–122. [Google Scholar] [CrossRef]
- Mistry, V.; Grey, A.; Bolland, M.J. Publication Rates After the First Retraction for Biomedical Researchers with Multiple Retracted Publications. Account. Res. 2019, 26, 277–287. [Google Scholar] [CrossRef]
- Pickett, J.T. The Stewart Retractions: A Quantitative and Qualitative Analysis. Econ. Watch J. 2020, 17, 152–190. [Google Scholar]
- Auspurg, K.; Hinz, T. Social Dilemmas in Science: Detecting Misconduct and Finding Institutional Solutions. In Social Dilemmas, Institutions, and the Evolution of Cooperation; Jann, B., Przepiorka, W., Eds.; DeGruyter Oldenbourg: Berlin, Germany; Boston, MA, USA, 2017. [Google Scholar]
- Mears, D.P.; Stewart, E.A.; Warren, P.Y.; Simons, R.L. Culture and Formal Social Control: The Effect of the Code of the Street on Police and Court Decision-Making. Justice Q. 2017, 34, 217–247. [Google Scholar] [CrossRef]
- Stewart, E.A. School Social Bonds, School Climate, and School Misbehavior: A Multilevel Analysis. Justice Q. 2003, 20, 575–604. [Google Scholar] [CrossRef]
- Johnson, B.D.; Stewart, E.A.; Pickett, J.; Gertz, M. Ethnic Threat and Social Control: Examining Public Support for Judicial Use of Ethnicity in Punishment. Criminology 2011, 49, 401–441. [Google Scholar] [CrossRef]
- Stewart, E.A.; Martinez, R., Jr.; Baumer, E.P.; Gertz, M. The Social Context of Latino Threat and Punitive Latino Sentiment. Soc. Probl. 2015, 62, 68–92. [Google Scholar] [CrossRef] [Green Version]
- Stewart, E.A.; Mears, D.P.; Warren, P.Y.; Baumer, E.P.; Arnio, A.N. Lynchings, Racial Threat, and Whites’ Punitive Views Toward Blacks. Criminology 2018, 56, 455–480. [Google Scholar] [CrossRef]
- Mears, D.P.; Stewart, E.A.; Warren, P.Y.; Craig, M.O.; Arnio, A.N. A Legacy of Lynchings: Perceived Criminal Threat Among Whites. Law Soc. Rev. 2019, 53, 487–517. [Google Scholar] [CrossRef]
- Stewart, E.A.; Johnson, B.D.; Warren, P.Y.; Rosario, J.L.; Hughes, C. The Social Context of Criminal Threat, Victim Race, and Punitive Black and Latino Sentiment. Soc. Probl. 2019, 66, 194–221. [Google Scholar] [CrossRef]
- Simons, R.L.; Lin, K.H.; Gordon, L.C.; Brody, G.H.; Murry, V.; Conger, R.D. Community Differences in the Association Between Parenting Practices and Child Conduct Problems. J. Marriage Fam. 2002, 64, 331–345. [Google Scholar] [CrossRef]
- Mears, D.P.; Pickett, J.T.; Golden, K.; Chiricos, T.; Gertz, M. The Effect of Interracial Contact Whites’ Perceptions of Victimization Risk and Black Criminality. J. Res. Crime Delinq. 2013, 50, 272–299. [Google Scholar] [CrossRef]
- Pickett, J.T.; Mancini, C.; Mears, D.P.; Gertz, M. Public (Mis)understanding of Crime Policy: The Effects of Criminal Justice Experience and Media Reliance. Crim. Justice Policy Rev. 2015, 26, 500–522. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, C.; Pickett, J.T.; Mancini, C. Using Path Analysis to Explain Racialized Support for Punitive Delinquency Policies. J. Quant. Criminol. 2015, 31, 699–725. [Google Scholar] [CrossRef]
- Mancini, C.; Pickett, J.T. The Good, the Bad, and the Incomprehensible: Typification of Victims and Offenders as Antecedents of Beliefs about Sex Crime. J. Interpers. Violence 2016, 31, 257–281. [Google Scholar] [CrossRef]
- Pickett, J.T.; Chiricos, T.; Golden, K.M.; Gertz, M. Reconsidering the Relationship Between Perceived Neighborhood Racial Composition and Whites’ Perceptions of Victimization Risk: Do Racial Stereotypes Matter? Criminology 2012, 50, 145–186. [Google Scholar] [CrossRef]
- Shi, L.; Lu, Y.; Pickett, J.T. The Public Salience of Crime, 1960–2014: Age-Period-Cohort and Time-Series Analyses. Criminology 2020, 58, 568–593. [Google Scholar] [CrossRef]
- Pickett, J.T.; Mancini, C.; Mears, D.P. Vulnerable Victims, Monstrous Offenders, and Unmanageable Risk: Explaining Public Opinion on the Social Control of Sex Crime. Criminology 2013, 51, 729–759. [Google Scholar] [CrossRef]
- Brown, N.J.; Heathers, J.A. Rounded Input Variables, Exact Test Statistics (RIVETS): A Technique for Detecting Hand-Calculated Results in Published Research; Unpublished Paper; Bouve College of Health Sciences, Northeastern University: Boston, MA, USA, 2019. [Google Scholar]
- Mosimann, J.E.; Dahlberg, J.E.; Davidian, N.M.; Krueger, J.W. Terminal Digits and the Examination of Questioned Data. Account. Res. 2002, 9, 75–92. [Google Scholar] [CrossRef]
- Mosimann, J.E.; Wiseman, C.V.; Edelman, R.E. Data Fabrication: Can People Generate Random Digits? Account. Res. 1995, 4, 31–55. [Google Scholar] [CrossRef]
- Dutta, A.; Choudhury, M.R.; De, A.K. A Unified Approach to Fraudulent Detection. Int. J. Appl. Eng. Res. 2022, 17, 110–124. [Google Scholar] [CrossRef]
- Varian, H.R. Benford’s Law. Am. Stat. 1972, 26, 65–66. [Google Scholar]
- Diekmann, A. Not the First Digit! Using Benford’s Law to Detect Fraudulent Scientific Data. J. Appl. Stat. 2007, 34, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Gross, J. Difficulties Detecting Fraud? The Use of Benford’s Law on Regression Tables. Jahrb. Fur Natl. Und Stat. 2011, 231, 733–748. [Google Scholar]
- Koch, C.; Okamura, K. Benford’s Law and COVID-19 Reporting. Econ. Lett. 2020, 196, 109573. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
Reference Number | Typology | Authors | Year | Sample Size | Grant-Funded | Google Cites |
---|---|---|---|---|---|---|
18 | Corrected | Mears, Stewart, Warren, Simons | 2017 | 784 | YES | 49 |
19 | Retracted | Stewart | 2003 | 10,578 | NO | 543 |
20 | Retracted | Johnson, Stewart, Pickett, Gertz | 2011 | 1184 | NO | 92 |
21 | Retracted | Stewart, Martinez, Baumer, Gertz | 2015 | 1186 | YES | 67 |
22 | Retracted | Stewart, Mears, Warren, Baumer, Arnio | 2018 | 1441 | NO | 19 |
23 | Retracted | Mears, Stewart, Warren, Craig, Arnio | 2019 | 1301 | NO | 13 |
24 | Retracted | Stewart, Johnson, Warren, Rosario, Hughes | 2019 | 2408 | NO | 4 |
25 | Control | Simons, Lin, Gordon, Brody, Murry, Conger | 2002 | 841 | YES | 291 |
26 | Control | Mears, Pickett, Golden, Chiricos, Gertz | 2013 | 520 | YES | 32 |
27 | Control | Pickett, Mancini, Mears, Gertz | 2015 | 1308 | NO | 81 |
28 | Control | Metcalfe, Pickett, Mancini | 2015 | 540 | NO | 46 |
29 | Control | Mancini, Pickett | 2016 | 537 | NO | 24 |
30 | Control | Pickett, Chiricos, Golden, Gertz | 2012 | 1273 | NO | 41 |
31 | Control | Shi, Lu, Pickett | 2020 | 422,504 | NO | 25 |
32 | Control | Pickett, Mancini, Mears | 2013 | 499 | NO | 30 |
Variable | Mean | Standard Deviation | Median | Range of Scores |
---|---|---|---|---|
Google Citations (Jan 23) | 115.60 | 146.99 | 51.00 | 4–548 |
Year Article Published | 2013.87 | 5.33 | 2015.00 | 2002–2020 |
Total Number Authors | 3.87 | 1.30 | 4.00 | 1–6 |
Total Pages Used | 28.40 | 6.39 | 28.00 | 16–41 |
Sample Size | 29,793.60 | 108,668.82 | 1186.00 | 499–422,504 |
Grant Supported | 0.267 | 0.458 | 0.00 | 0–1 |
(0 = No, 1 = Yes) |
Reference Number | Typology | HC % | Zero % | SE Rate | B Rate | % Bad Binary | % Close Binary | % Close or Bad Binary |
---|---|---|---|---|---|---|---|---|
18 | Corrected | 0 | 2.78 | Avoided | 69.23 | 50.00 | 37.50 | 87.50 |
19 | Retracted | 100.00 | 0.00 | 93.33 | 93.33 | 100.00 | 0.00 | 100.00 |
20 | Retracted | 0 | 2.00 | 90.48 | 54.76 | 53.33 | 13.33 | 66.67 |
21 | Retracted | 91.38 | 1.75 | 94.44 | 66.67 | 54.55 | 9.09 | 63.64 |
22 | Retracted | 0 | 0.191 | 99.40 | 54.17 | 66.67 | 0.00 | 66.67 |
23 | Retracted | 0 | 12.05 | 54.31 | 18.97 | Avoided | Avoided | Avoided |
24 | Retracted | 0 | 0.00 | 97.62 | 56.35 | 58.82 | 5.88 | 64.71 |
25 | Control | 0 | 10.00 | Avoided | Avoided | 0 | 0 | 0 |
26 | Control | 0 | 10.96 | 10.00 | 0 | 0 | 12.50 | 12.50 |
27 | Control | 0 | 6.59 | 0 | 0 | 0 | 11.76 | 11.76 |
28 | Control | 0 | 8.14 | 0 | 0 | 0 | 0 | 0 |
29 | Control | 0 | 7.81 | 52.94 | 13.73 | 0 | 0 | 0 |
30 | Control | 0 | 8.96 | 38.68 | 14.15 | 0 | 8.33 | 8.33 |
31 | Control | 0 | 8.54 | 8.70 | 4.35 | Avoided | Avoided | Avoided |
32 | Control | 0 | 8.14 | Avoided | 7.81 | 0 | 0 | 0 |
Reference Number | Typology | HC | Zeros | SE | Beta | Bad Binary | Close or Bad Binary | Anomaly Scale | Severity Measure |
---|---|---|---|---|---|---|---|---|---|
18 | Corrected | No issue | Major | Avoided | Major | Major | Major | 17.00 | 4.25 |
19 | Retracted | Major | Major | Major | Major | Major | Major | 24.00 | 6.00 |
20 | Retracted | No Issue | Major | Major | Moderate | Major | Major | 19.00 | 4.50 |
21 | Retracted | Major | Major | Major | Major | Major | Major | 24.00 | 6.00 |
22 | Retracted | No Issue | Major | Major | Moderate | Major | Major | 19.00 | 4.50 |
23 | Retracted | No Issue | No Issue | Moderate | Slight | Avoided | Avoided | 7.00 | 1.25 |
24 | Retracted | No Issue | Major | Major | Moderate | Major | Major | 19.00 | 4.50 |
25 | Control | No issue | No issue | Avoided | Avoided | No issue | No issue | 2.00 | 0.50 |
26 | Control | No issue | No issue | Slight | No issue | No issue | Slight | 4.00 | 0.50 |
27 | Control | No issue | Slight | No issue | No issue | No issue | Slight | 4.00 | 0.50 |
28 | Control | No issue | No issue | No issue | No issue | No issue | No issue | 0.00 | 0.00 |
29 | Control | No issue | No issue | Moderate | Slight | No issue | No issue | 5.00 | 0.75 |
30 | Control | No issue | No issue | Moderate | Slight | No issue | Slight | 7.00 | 1.00 |
31 | Control | No issue | No issue | Slight | No issue | Avoided | Avoided | 4.00 | 0.75 |
32 | Control | No issue | No issue | Avoided | Slight | No issue | No issue | 3.00 | 0.50 |
Variables | Control (N = 8) Retracted (N = 7) | d | t | df | p | |||
---|---|---|---|---|---|---|---|---|
X | SD | X | SD | |||||
Comparing Percentages in decimals for: | ||||||||
Hand Calculated Tests | 0 | 0 | 0.27 | 0.47 | 0.86 | 1.55 | 6 | 0.086 |
Wide Error Binary SDs | 0 | 0 | 0.64 | 0.19 | 5.1 | 8.42 | 5 | <0.001 |
Wide and Narrow Error | 0.05 | 0.06 | 0.75 | 0.15 | 6.3 | 10.64 | 6.31 | <0.001 |
Binary SDs Zeroes | 0.09 | 0.01 | 0.03 | 0.04 | 1.94 | 3.75 | 13 | 0.001 |
Adjacent Identical B’s | 0.06 | 0.06 | 0.6 | 0.24 | 3.1 | 5.8 | 12 | <0.002 |
Adjacent Identical SE’s | 0.18 | 0.22 | 0.88 | 0.17 | 3.55 | 6.15 | 10 | <0.001 |
Comparing Anomaly Ratings for: | ||||||||
Hand-Calculated | 0 | 0 | 1.14 | 1.95 | 0.86 | 1.55 | 6 | 0.086 |
Wide Error Binary SDs | 0.13 | 0.35 | 3.57 | 1.13 | 5.1 | 8.19 | 13 | <0.001 |
Wide and Narrow Error Binary SDs | 0.88 | 0.99 | 3.57 | 1.13 | 2.55 | 4.92 | 13 | <0.003 |
Zeroes | 0.25 | 0.71 | 3.43 | 1.51 | 2.76 | 5.34 | 13 | <0.001 |
Adjacent Identical B’s | 0.88 | 0.99 | 3.29 | 0.76 | 2.71 | 5.23 | 13 | <0.001 |
Adjacent Identical SE’s | 1.5 | 1.2 | 3.43 | 1.13 | 1.65 | 3.19 | 13 | 0.004 |
Anomaly Severity Scale | 0.56 | 0.29 | 4.43 | 1.59 | 3.52 | 6.8 | 13 | <0.001 |
Total Anomaly Scale | 3.63 | 2.07 | 18.43 | 5.71 | 3.55 | 6.87 | 13 | <0.001 |
Variables | Control Group | Retracted Group | df | t | p | d | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
Benford discrepancies Over all nine digits (DIFF9) | 0.3445 | 0.1577 | 0.488 | 0.1618 | 13 | 1.74 | 0.053 | 0.9 |
Benford discrepancies Over digits 1, 2, and 3 (DIFF3) | 0.1418 | 0.068 | 0.2392 | 0.1111 | 13 | 2.08 | 0.029 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumm, W.R.; Crawford, D.W.; Lockett, L.; Ateeq, A.b.; AlRashed, A. Can Retracted Social Science Articles Be Distinguished from Non-Retracted Articles by Some of the Same Authors, Using Benford’s Law or Other Statistical Methods? Publications 2023, 11, 14. https://doi.org/10.3390/publications11010014
Schumm WR, Crawford DW, Lockett L, Ateeq Ab, AlRashed A. Can Retracted Social Science Articles Be Distinguished from Non-Retracted Articles by Some of the Same Authors, Using Benford’s Law or Other Statistical Methods? Publications. 2023; 11(1):14. https://doi.org/10.3390/publications11010014
Chicago/Turabian StyleSchumm, Walter R., Duane W. Crawford, Lorenza Lockett, Asma bin Ateeq, and Abdullah AlRashed. 2023. "Can Retracted Social Science Articles Be Distinguished from Non-Retracted Articles by Some of the Same Authors, Using Benford’s Law or Other Statistical Methods?" Publications 11, no. 1: 14. https://doi.org/10.3390/publications11010014
APA StyleSchumm, W. R., Crawford, D. W., Lockett, L., Ateeq, A. b., & AlRashed, A. (2023). Can Retracted Social Science Articles Be Distinguished from Non-Retracted Articles by Some of the Same Authors, Using Benford’s Law or Other Statistical Methods? Publications, 11(1), 14. https://doi.org/10.3390/publications11010014