Siloranes–Suitability of a Novel Adhesive for Orthodontic Bracket Bonding
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buonocore, M.G. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J. Dent. Res. 1955, 34, 849–853. [Google Scholar] [CrossRef]
- Fugolin, A.P.P.; Pfeifer, C.S. New Resins for Dental Composites. J. Dent. Res. 2017, 96, 1085–1091. [Google Scholar] [CrossRef]
- Stepto, R.F.T. Polymer Networks: Principles of Their Formation, Structure and Properties; Blackie Academic and Professional Publishing: London, UK, 1998. [Google Scholar]
- Weinmann, W.; Thalacker, C.; Guggenberger, R. Silorance in dental composites. Dent. Mater. 2005, 21, 68–74. [Google Scholar] [CrossRef]
- Schweikl, H.; Schmalz, G.; Weinmann, W. The Induction of gene mutations and micronuclei by oxiranes and siloranes in mammalian cells in vitro. J. Dent. Res. 2004, 83, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Belfield, K.; Zang, G. Photoinitiated cationic ring-opening polymerization of a cyclosiloxane. Polym. Bul. 1997, 38, 165–168. [Google Scholar] [CrossRef]
- Sauro, S.; Pashley, D.; Mannocci, F.; Tay, F.; Pilecki, P.; Scherriff, M.; Watson, T. Micropermeability of current self-etching and etch-and-rinse adhesives bonded to deep dentine: A comparison study using a double-staining/confocal microscopy technique. Eur. J. Oral Sci. 2008, 116, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Palin, M.; Fleming, G.; Nathwani, H.; Burke, F.; Randall, R. In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites. Dent. Mater. 2005, 21, 324–335. [Google Scholar] [CrossRef]
- Eick, D.; Smith, R.; Pinzino, C.; Kostoryz, E. Stability of silorane dental monomers in aqueous systems. J. Dent. 2006, 34, 405–410. [Google Scholar] [CrossRef]
- Eick, D.; Kotha, S.; Chappelow, C.; Kilway, K.; Giese, G.; Glaros, A.; Pinzino, C. Properties of silorane-based dental resins and composites containing a stress-reducing monomer. Dent. Mater. 2007, 23, 1011–1017. [Google Scholar] [CrossRef]
- Buergers, R.; Schneider-Brachert, W.; Hahnel, S.; Rosentritt, M.; Handel, G. Streptococcal adhesion to novel low-shrink silorane-based restorative. Dent. Mater. 2009, 25, 269–275. [Google Scholar]
- Yantcheva, S.M. Marginal Adaption and Micropermeability of Class II Cavities restored with Three Different Types of Resin Composites—A Comparative Ten-Month in Vitro Study. Polymers 2021, 13, 1660. [Google Scholar] [CrossRef]
- Hepdeniz, O.K.; Ermis, R.B. Comparative Evaluation of Marginal Adaption and Microleakage of Low-shrinking Composites after Thermocycling and Mechanical Loading. Niger. J. Clin. Pract. 2019, 22, 633–641. [Google Scholar] [PubMed]
- Jaafoura, S.; Kikly, A.; Sahtout, S.; Trabelsi, M.; Kammoun, D. Shear Bond Strength of Three Composite Resins to Fluorosed and Sound Dentine: In Vitro Study. Int. J. Dent. 2020, 2020, 4568568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haajizadeh, H.; Nemati-Karimooy, A.; Nasseh, A.; Rahmanpour, N. Evaluating shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and solirane-based adhesives. J. Clin. Exp. Dent. 2015, 7, e563. [Google Scholar] [CrossRef]
- Kouros, P.; Koliniotou-Koumpia, E.; Spyrou, M.; Koulaouzidou, E. Influence of material and surface treatment on composite repair shear bond strength. J. Conserv. Dent. 2018, 21, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Syrek, A.; Kappler, O.; Guggenberger, R.; Weinmann, W.; Dede, K.; Loll, H.; Thalacker, C. One year bond strenght evolution of the silorane restorative system. In Proceedings of the IADR 86th General Session & Exhibition, Toronto, ON, Canada, 3 July 2008. [Google Scholar]
- Thalacker, C.; Heumann, A.; Weinmann, W.; Guggenberger, R.; Syrek, A. Shear bond strengths of silorane versus methacrylate restorative systems. In Proceedings of the IADR 86th General Session & Exhibition, Toronto, ON, Canada, 3 July 2008. [Google Scholar]
- Artun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acedetchenamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- Fowler, C.S.; Swartz, M.L.; Moore, B.K.; Rhodes, B.F. Influence of selected variables on adhesion testing. Dent. Mater. 1992, 8, 265–269. [Google Scholar] [CrossRef]
- Krifka, S.; Börzsönyi, A.; Koch, A.; Hiller, K.A.; Schmalz, G.; Friedl, K.H. Bond strength of adhesive systems to dentin and enamel—Human vs. bovine primary teeth in vitro. Dent. Mater. 2008, 24, 888–894. [Google Scholar] [CrossRef]
- Nakamichi, I.; Iwaku, M.; Fusayama, T. Bovine teeth as possible substitutes in the adhesion test. J. Dent. Res. 1983, 62, 1076–1081. [Google Scholar] [CrossRef]
- Reis, A.F.; Giannini, M.; Kavaguchi, A.; Soares, C.J.; Line, S.R. Comparison of microtensile bond strength to enamel and dentin of human, bovine and porcine teeth. J. Adhes. Dent. 2004, 6, 117–121. [Google Scholar]
- Oesterle, L.J.; Shellhart, W.C.; Belanger, G.K. The use of bovine enamel in bonding studies. Am. J. Orthod. Dentofac. Orthop. 1996, 113, 514–519. [Google Scholar] [CrossRef]
- Bachmann, L.; Craievich, A.F.; Zezell, D.M. Crystalline structure of dental enamel after Ho:YLF laser irradiation. Arch. Oral Biol. 2004, 49, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Gallo, S.; Celmare, R.L.; D’Anto, V.; Grippaudo, C.; Gandini, P.; Sfondrini, F.M. Orthodontic debonding and tooth sensitivity of anterior and posterior teeth. Angle Orthod. 2020, 90, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, I. A review of direct orthodontic bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Ermis, R.; De Munck, J.; Cardoso, M.; Coutinho, E.; Van Landuyt, K.; Poitevin, A.; Lambrechts, P.; Meerbeek, B. Bonding to ground versus unground enamel in flourosed teeth. Dent. Mater. 2007, 23, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Kanemura, N.; Sanob, H.; Tagamia, J. Tensile bond strength to and SEM evaluation of ground and intact enamel surfaces. J. Dent. 1999, 27, 523–530. [Google Scholar] [CrossRef]
- Bishara, S.; Ajlouni, R.; Laffoon, J. Effect of thermocycling on the shear bond strength of a cyanoacrylate orthodontic adhesive. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 21–24. [Google Scholar] [CrossRef]
- Elekdag-Turk, S.; Turk, T.; Isci, D.; Ozkalayci, N. Thermocycling effects on shear bond strengths of a self-etching primer. Angle Orthod. 2008, 78, 351–356. [Google Scholar] [CrossRef]
- Daub, J.; Berzins, D.; Linn, B.; Bradley, T. Bond strength of direct and indirect bonded brackets after thermocycling. Angle Orthod. 2006, 76, 295–300. [Google Scholar]
- Bishara, S.; Khowassah, A.; Oesterle, L. Effect of humidity and temperature changes on orthodontic direct-bonding adhesive systems. J. Dent. Res. 1975, 54, 751–757. [Google Scholar] [CrossRef]
- Grubisa, H.; Heo, G.; Raboud, D.; Glover, K.; Major, P. An evaluation and comparison of orthodontic bracket bond strengths achieved with selfetching primer. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Linn, B.; Berzins, D.; Dhuru, V.; Bradley, T. A comparison of bond strength between direct- and indirect-bonding methods. Angle Orthod. 2006, 76, 289–294. [Google Scholar] [PubMed]
- Brauchli, L.; Zeller, M.; Wichelhaus, A. Shear bond forces of seven self-etching primers after thermo-cycling. J. Orofac. Orthop. 2011, 72, 371–380. [Google Scholar] [CrossRef] [PubMed]
Adhesive and Etching Mode | Group Name, Bracket Type, n | Shear Bond Strength [MPa], (SD) | Significance at p ≤ 0.05 | ARI Score |
---|---|---|---|---|
Filtek Silorane, Silorane self-etching primer | A, ceramic, 14 | 3.50 (1.71) | G–K | 0.27 |
B, polymer, 4 | 1.37 (1.87) | G–K | 0 | |
C, metal,11 | 1.77 (0.97) | G–K | 0.09 | |
Filtek Silorane, conventional etching, Silorane primer | D, ceramic, 15 | 4.28 (1.43) | G–K | 0.57 |
E, polymer, 9 | 0.87 (0.53) | G–K | 0.22 | |
F, metal, 15 | 2.71 (0.91) | G–K | 0.27 | |
Transbond XT, Conventional etching, Transbond MIP | G, ceramic, 15 | 16.5 (12.2) | A–F, K | 3.0 |
H, polymer, 15 | 7.62 (3.62) | A–F, K | 2.9 | |
I, metal, 15 | 14.0 (4.89) | A–F, K | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brauchli, L.; Steineck, M. Siloranes–Suitability of a Novel Adhesive for Orthodontic Bracket Bonding. Dent. J. 2021, 9, 135. https://doi.org/10.3390/dj9110135
Brauchli L, Steineck M. Siloranes–Suitability of a Novel Adhesive for Orthodontic Bracket Bonding. Dentistry Journal. 2021; 9(11):135. https://doi.org/10.3390/dj9110135
Chicago/Turabian StyleBrauchli, Lorenz, and Markus Steineck. 2021. "Siloranes–Suitability of a Novel Adhesive for Orthodontic Bracket Bonding" Dentistry Journal 9, no. 11: 135. https://doi.org/10.3390/dj9110135