Evaluation of Enamel Topography after Debonding Orthodontic Ceramic Brackets by Different Er,Cr:YSGG and Er:YAG Lasers Settings
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Microscopic Analysis
3.1.1. Stereomicroscopic Analysis
3.1.2. Scanning Electron Microscope Analysis after Debonding
3.2. Analytical Results
Shear Bond Strength
4. Discussion
4.1. Enamel Topography
4.2. Shear Bond Strength
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Montedori, A.; Abraha, I.; Orso, M.; D’Errico, P.G.; Pagano, S.; Lombardo, G. Lasers for caries removal in deciduous and permanent teeth. Cochrane Database Syst. Rev. 2016, 9, CD010229. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, E.F.; Araújo, M.T.S.; Nojima, L.I.; Cunha, A.C.; Silveira, B.L.; Marquezan, M. High-intensity laser application in Orthodontics. Dent. Press J. Orthod. 2017, 22, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumbryte, I.; Jonavicius, T.; Linkeviciene, L.; Linkevicius, T.; Peciuliene, V.; Malinauskas, M. The prognostic value of visually assessing enamel microcracks: Do debonding and adhesive removal contribute to their increase? Angle Orthod. 2016, 86, 437–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochrane, N.J.; Lo, T.W.G.; Adams, G.G.; Schneider, P.M. Quantitative analysis of enamel on debonded orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 312–319. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Agarwal, D.K.; Gupta, A.; Bhattacharya, P.; Ansar, J.; Bhandari, R. Shear Bond Strength of Ceramic Brackets with Different Base Designs: Comparative In-vitro Study. J. Clin. Diagn. Res. JCDR 2016, 10, ZC64–ZC68. [Google Scholar] [CrossRef]
- Dostalova, T.; Jelinkova, H.; Remes, M.; Šulc, J.; Němec, M. The Use of the Er:YAG Laser for Bracket Debonding and Its Effect on Enamel Damage. Photomed. Laser Surg. 2016, 34, 394–399. [Google Scholar] [CrossRef]
- Zach, L.; Cohen, G. Pulp Response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Nalbantgil, D.; Tozlu, M.; Oztoprak, M.O. Comparison of Different Energy Levels of Er:YAG Laser Regarding Intrapulpal Temperature Change During Safe Ceramic Bracket Removal. Photomed. Laser Surg. 2018, 36, 209–213. [Google Scholar] [CrossRef]
- Mundethu, A.R.; Gutknecht, N.; Franzen, R. Rapid debonding of polycrystalline ceramic orthodontic brackets with an Er:YAG laser: An in vitro study. Lasers Med. Sci. 2014, 29, 1551–1556. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K.; Matys, J.; Żmuda-Stawowiak, D.; Mroczka, K.; Dominiak, M.; Brugnera Junior, A.; Gruber, R.; Romanos, G.E.; Sculean, A. Er:YAG Laser for Metal and Ceramic Bracket Debonding: An In Vitro Study on Intrapulpal Temperature, SEM, and EDS Analysis. Photomed. Laser Surg. 2018, 36, 595–600. [Google Scholar] [CrossRef]
- Oztoprak, M.O.; Nalbantgil, D.; Erdem, A.S.; Tozlu, M.; Arun, T. Debonding of ceramic brackets by a new scanning laser method. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 195–200. [Google Scholar] [CrossRef] [PubMed]
- De Moor, R.J.G.; Delmé, K.I.M. Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: Part 1. Laser-assisted cavity preparation. J. Adhes. Dent. 2009, 11, 427–438. [Google Scholar] [PubMed]
- Ghazanfari, R.; Nokhbatolfoghahaei, H.; Alikhasi, M. Laser-Aided Ceramic Bracket Debonding: A Comprehensive Review. J. Lasers Med. Sci. 2016, 7, 2–11. [Google Scholar] [CrossRef]
- Tozlu, M.; Oztoprak, M.O.; Arun, T. Comparison of shear bond strengths of ceramic brackets after different time lags between lasing and debonding. Lasers Med. Sci. 2012, 27, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Coluzzi, D.J. Fundamentals of dental lasers: Science and instruments. Dent. Clin. N. Am. 2004, 48, 751–770. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO/TS 11405:2015 Dentistry. Testing of Adhesion to Tooth Structure. Geneva: International Organization for Standardization. 2015. Available online: http://www.iso.org/standard/62898.html (accessed on 10 November 2019).
- Nalbantgil, D.; Oztoprak, M.O.; Tozlu, M.; Arun, T. Effects of different application durations of ER:YAG laser on intrapulpal temperature change during debonding. Lasers Med. Sci. 2011, 26, 735–740. [Google Scholar] [CrossRef]
- Dumbryte, I.; Vebriene, J.; Linkeviciene, L.; Malinauskas, M. Enamel microcracks in the form of tooth damage during orthodontic debonding: A systematic review and meta-analysis of in vitro studies. Eur. J. Orthod. 2018, 40, 636–648. [Google Scholar] [CrossRef]
- Dumbryte, I.; Linkeviciene, L.; Linkevicius, T.; Malinauskas, M. Enamel microcracks in terms of orthodontic treatment: A novel method for their detection and evaluation. Dent. Mater. J. 2017, 36, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Sorel, O.; El Alam, R.; Chagneau, F.; Cathelineau, G. Comparison of bond strength between simple foil mesh and laser-structured base retention brackets. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 260–266. [Google Scholar] [CrossRef]
- Reynolds, I.R.; von Fraunhofer, J.A. Direct bonding of orthodontic brackets—A comparative study of adhesives. Br. J. Orthod. 1976, 3, 143–146. [Google Scholar] [CrossRef]
- Endo, T.; Ozoe, R.; Shinkai, K.; Aoyagi, M.; Kurokawa, H.; Katoh, Y.; Shimooka, S. Shear bond strength of brackets rebonded with a fluoride-releasing and -recharging adhesive system. Angle Orthod. 2009, 79, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Chávez, J.A.; Arenas-Alatorre, J.; Belio-Reyes, I.A. Comparative study of dental enamel loss after debonding braces by analytical scanning electron microscopy (SEM). Microsc. Res. Tech. 2017, 80, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Bishara, S.E.; Fehr, D.E.; Jakobsen, J.R. A comparative study of the debonding strengths of different ceramic brackets, enamel conditioners, and adhesives. Am. J. Orthod. Dentofac. Orthop. 1993, 104, 170–179. [Google Scholar] [CrossRef]
- Mirhashemi, A.; Chiniforush, N.; Jadidi, H.; Sharifi, N. Comparative study of the effect of Er:YAG and Er:Cr;YSGG lasers on porcelain: Etching for the bonding of orthodontic brackets. Lasers Med. Sci. 2018, 33, 1997–2005. [Google Scholar] [CrossRef]
- Hoteit, M.; Nammour, S.; Zeinoun, T. Assessment of microcracks and shear bond strength after debonding orthodontic ceramic brackets on enamel priorly etched by different Er,Cr:YSGG and Er:YAG laser settings without acid application: An in vitro study. Int. Orthod. 2019, 17, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Tripathi, T.; Rai, P.; Kanase, A. SEM Evaluation of Enamel Surface Changes and Enamel Microhardness around Orthodontic Brackets after Application of CO2 Laser, Er,Cr:YSGG Laser and Fluoride Varnish: An In vivo Study. J. Clin. Diagn. Res. JCDR 2017, 11, ZC59–ZC63. [Google Scholar] [CrossRef] [PubMed]
- Fornaini, C.; Brulat, N.; Milia, G.; Rockl, A.; Rocca, J.-P. The use of sub-ablative Er:YAG laser irradiation in prevention of dental caries during orthodontic treatment. Laser Ther. 2014, 23, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraldez de Luis, I.; Garrido, M.A.; Gomez del rio, T.; Ceballos, L.; Rodriguez, J. Comparison of the mechanical properties of dentin and enamel determined by different nano indentation techniques: Conventional method and continuous stiffness measurement. Bol. Soc. Esp. Ceram. Vidr. 2010, 49, 177–182. [Google Scholar]
Group | Modified Enamel Topography | Normal Enamel Topography | |||
---|---|---|---|---|---|
EMC | Enamel Loss | ||||
n (%) | n (%) | n (%) | |||
Er,Cr:YSGG | 1 | 3 W/20 Hz | 5 (41.7) | 4 (33.3) | 5 (41.7) |
2 | 3 W/40 Hz | 0 (0.0) | 8 (66.6) | 4 (33.3) | |
3 | 4 W/20 Hz | 0 (0.0) | 2 (16.7) | 10 (83.3) | |
4 | 4 W/40 Hz | 0 (0.0) | 9 (75.0) | 3 (25.0) | |
5 | 5 W/20 Hz | 0 (0.0) | 1 (8.3) | 11 (91.7) | |
6 | 5 W/40 Hz | 0 (0.0) | 10 (83.3) | 2 (16.7) | |
Er:YAG | 7 | 80 mJ/20 Hz | 4 (33.3) | 10 (83.3) | 0 (0.0) |
8 | 80 mJ/40 Hz | 5 (41.7) | 5 (41.7) | 5 (41.7) | |
9 | 100 mJ/20 Hz | 2 (16.7) | 10 (83.3) | 2 (16.7) | |
10 | 100 mJ/40 Hz | 1 (8.3) | 7 (58.3) | 4 (33.3) | |
11 | 120 mJ/20 Hz | 6 (50.0) | 6 (50.0) | 4 (33.3) | |
12 | 120 mJ/40 Hz | 0 (0.0) | 10 (83.3) | 2 (16.7) | |
13 | 140 mJ/20 Hz | 3 (25.0) | 12 (100) | 0 (0.0) | |
14 | 140 mJ/40 Hz | 2 (16.7) | 11 (91.7) | 1 (8.3) | |
Control | 15 | Conventional | 7 (58.3) | 0 (0.0) | 5 (41.7) |
Group | Presence of Intact Enamel | Fisher’s Exact Test | ||||
---|---|---|---|---|---|---|
Damaged n (%) | Intact n (%) | Test Statistic | p Value | |||
Er,Cr:YSGG | 1 | 3 W/20 Hz | 7 (58.3) | 5 (41.7) | 52.730 | <0.001 * |
2 | 3 W/40 Hz | 8 (66.7) | 4 (33.3) | |||
3 | 4 W/20 Hz | 2 (16.7) | 10 (83.3) | |||
4 | 4 W/40 Hz | 9 (75) | 3 (25.0) | |||
5 | 5 W/20 Hz | 1 (8.3) | 11 (91.7) | |||
6 | 5 W/40 Hz | 10 (83.3) | 2 (16.7) | |||
Er:YAG | 7 | 80 mJ/20 Hz | 12 (100.0) a | 0 (0.0) b | ||
8 | 80 mJ/40 Hz | 7 (58.3) | 5 (41.7) | |||
9 | 100 mJ/20 Hz | 10 (83.3) | 2 (16.7) | |||
10 | 100 mJ/40 Hz | 8 (66.7) | 4 (33.3) | |||
11 | 120 mJ/20 Hz | 8 (66.7) | 4 (33.3) | |||
12 | 120 mJ/40 Hz | 10 (83.3) | 2 (16.7) | |||
13 | 140 mJ/20 Hz | 12 (100.0) a | 0 (0.0) b | |||
14 | 140 mJ/40 Hz | 11 (91.7) | 1 (8.3) | |||
Control | 15 | Conventional | 7 (58.3) | 5 (41.7) |
Significant Post-Hoc Pairwise Comparisons a | |||
---|---|---|---|
Laser Group | |||
Groups 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, and 14 | Groups 3,5 | Group Control | |
Normal topography | 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 | ||
Damaged topography | 3 and 5 | 3 and 5 |
Group | SBS | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | (Min.; Max.) | Coeff. Var. (%) | <8 n (%) | 8–13 n (%) | >13 n (%) | ||
Er,Cr:YSGG | 3 W/20 Hz | 10.57 | 5.18 | (0.00; 19.11) | 49.01 | 3 (25.0) | 5 (41.7) | 4 (33.3) |
3 W/40 Hz | 14.35 | 2.17 | (10.10; 17.3) | 15.12 | 0 (0.0) | 4 (33.3) | 8 (66.7) | |
4 W/20 Hz | 7.80 | 3.95 | (1.53; 12.80) | 50.64 | 6 (50.0) | 6 (50.0) | 0 (0.0) | |
4 W/40 Hz | 17.56 | 2.47 | (13.80; 20.4) | 14.07 | 0 (0.0) | 0 (0.0) | 12 (100.0) | |
5 W/20 Hz | 5.30 | 5.26 | (0.00; 16.60) | 99.25 | 8 (66.7) | 3 (25.0) | 1 (8.3) | |
5 W/40 Hz | 14.65 | 3.96 | (10.64; 21.0) | 27.03 | 0 (0.0) | 6 (50.0) | 6 (50.0) | |
Er:YAG | 80 mJ/20 Hz | 16.24 | 9.14 | (5.83; 29.72) | 56.28 | 4 (33.3) | 2 (16.7) | 6 (50.0) |
80 mJ/40 Hz | 16.09 | 5.34 | (4.87; 22.03) | 33.19 | 2 (16.7) | 0 (0.0) | 10 (83.3) | |
100 mJ/20 Hz | 17.27 | 9.35 | (3.90; 29.17) | 54.14 | 3 (25.0) | 1 (8.3) | 8 (66.7) | |
100 mJ/40 Hz | 9.06 | 5.21 | (0.00; 18.60) | 57.51 | 4 (33.3) | 5 (41.7) | 3 (25.0) | |
120 mJ/20 Hz | 16.14 | 4.44 | (9.46; 21.11) | 27.51 | 0 (0.0) | 4 (33.3) | 8 (66.7) | |
120 mJ/40 Hz | 8.02 | 4.36 | (0.00; 12.89) | 54.36 | 5 (41.7) | 7 (58.3) | 0 (0.0) | |
140 mJ/20 Hz | 13.77 | 3.57 | (8.01; 18.60) | 25.93 | 0 (0.0) | 6 (50.0) | 6 (50.0) | |
140 mJ/40 Hz | 10.68 | 6.36 | (0.00; 18.11) | 59.55 | 5 (41.7) | 1 (8.3) | 6 (50.0) | |
Conventional debonding | 21.07 | 1.80 | (17.69; 24.2) | 8.54 | 0 (0.0) | 0 (0.0) | 12 (100.0) |
Group | SBS | ANOVA Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Test Statistic a | p Value | |||||||||||
Er,Cr:YSGG | 3 W/20 Hz | 10.57 | 5.18 | 18.395 | <0.001 ** | |||||||||
3 W/40 Hz | 14.35 | 2.17 | ||||||||||||
4 W/20 Hz | 7.80 | 3.95 | ||||||||||||
4 W/40 Hz | 17.56 | 2.47 | ||||||||||||
5 W/20 Hz | 5.30 | 5.26 | ||||||||||||
5 W/40 Hz | 14.65 | 3.96 | ||||||||||||
Er:YAG | 80 mJ/20 Hz | 16.24 | 9.14 | |||||||||||
80 mJ/40 Hz | 16.09 | 5.34 | ||||||||||||
100 mJ/20 Hz | 17.27 | 9.35 | ||||||||||||
100 mJ/40 Hz | 9.06 | 5.21 | ||||||||||||
120 mJ/20 Hz | 16.14 | 4.44 | ||||||||||||
120 mJ/40 Hz | 8.02 | 4.36 | ||||||||||||
140 mJ/20 Hz | 13.77 | 3.57 | ||||||||||||
140 mJ/40 Hz | 10.68 | 6.36 | ||||||||||||
Conventional debonding | 21.07 | 1.80 | ||||||||||||
Games–Howell Post-Hoc Comparisons (p Value) | ||||||||||||||
Control | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
0.001 * | 0.037 * | <0.001 ** | 0.006 ** | <0.001 ** | <0.001 ** | 0.006 ** | <0.001 ** | 0.106 | 0.973 | <0.001 ** | 0.242 | 0.862 | 0.001 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoteit, M.; Nammour, S.; Zeinoun, T. Evaluation of Enamel Topography after Debonding Orthodontic Ceramic Brackets by Different Er,Cr:YSGG and Er:YAG Lasers Settings. Dent. J. 2020, 8, 6. https://doi.org/10.3390/dj8010006
Hoteit M, Nammour S, Zeinoun T. Evaluation of Enamel Topography after Debonding Orthodontic Ceramic Brackets by Different Er,Cr:YSGG and Er:YAG Lasers Settings. Dentistry Journal. 2020; 8(1):6. https://doi.org/10.3390/dj8010006
Chicago/Turabian StyleHoteit, Marwan, Samir Nammour, and Toni Zeinoun. 2020. "Evaluation of Enamel Topography after Debonding Orthodontic Ceramic Brackets by Different Er,Cr:YSGG and Er:YAG Lasers Settings" Dentistry Journal 8, no. 1: 6. https://doi.org/10.3390/dj8010006
APA StyleHoteit, M., Nammour, S., & Zeinoun, T. (2020). Evaluation of Enamel Topography after Debonding Orthodontic Ceramic Brackets by Different Er,Cr:YSGG and Er:YAG Lasers Settings. Dentistry Journal, 8(1), 6. https://doi.org/10.3390/dj8010006