Effectiveness of Silica Coatings in Enhancing Resin Cement Adhesion to Zirconia: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Database | Search Algorithm | Applied Limits |
---|---|---|
Scopus | (TITLE-ABS-KEY (zirconi*) OR TITLE-ABS-KEY (“yttria stabilized zirconia”) OR TITLE-ABS-KEY (“3y tzp”) AND TITLE-ABS-KEY (“surface treatment*”) OR TITLE-ABS-KEY (“thin film*”) OR TITLE-ABS-KEY (coating*) OR TITLE-ABS-KEY (“surface conditioning”) AND TITLE-ABS-KEY (“silicon dioxide”) OR TITLE-ABS-KEY (silica) AND TITLE-ABS-KEY (“resin cement*”) OR TITLE-ABS-KEY (“dual cure resin cement”) OR TITLE-ABS-KEY (“luting cement*”) AND TITLE-ABS-KEY (“bond strength”) OR TITLE-ABS-KEY (“bond strength test” ) AND NOT TITLE-ABS-KEY (implant)) | None |
Web of Science | Principal collection of Web of Science | |
ALL = (Zirconi* (Topic) or “yttria stabilized zirconia” (Topic) and “surface treatment*” (Topic) or “surface conditioning” (Topic) and “silicon dioxide” (Topic) or silica (Topic) and “resin cement*” (Topic) or “dual cure resin cement” (Topic) and “bond strength” (Topic) not “dental implant*” (Topic) not “Human Dentin” or Dentin (Title) and Preprint Citation Index (Exclude—Database)) | ||
PubMed | none | |
((((((((“zirconi*”[Title/Abstract] OR “yttria stabilized zirconia”[Title/Abstract]) AND “surface treatment*”[Title/Abstract]) OR “thin film*”[Title/Abstract] OR “surface conditioning”[Title/Abstract]) AND “silicon dioxide”[Title/Abstract]) OR “silica”[Title/Abstract]) AND “resin cement*”[Title/Abstract]) OR “dual cure resin cement”[Title/Abstract]) AND “bond strength”[Title/Abstract]) NOT “implant”[Title/Abstract] | ||
ScienceDirect | none | |
(zirconia OR “yttria stabilized zirconia”) AND (“surface treatment” OR “thin film”) AND (“silica” OR “Silicon dioxide”) AND (“bond strength”) AND NOT (dental implant)) | ||
EBSCO | TI zirconia OR TI yttria-stabilized zirconia AND surface treatment AND bond strength AND silicon dioxide AND resin cement | Academic Journals Thesaurus term bond strengths |
References
- Blum, I.R.; Özcan, M. Reparative dentistry: Possibilities and limitations. Curr. Oral Health Rep. 2018, 5, 264–269. [Google Scholar] [CrossRef]
- GBD 2021 US Burden of Disease and Forecasting Collaborators. Burden of disease scenarios by state in the USA, 2022–50: A forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024, 404, 2341–2370. [Google Scholar] [CrossRef]
- Ban, S. Classification and Properties of Dental Zirconia as Implant Fixtures and Superstructures. Materials 2021, 14, 4879. [Google Scholar] [CrossRef]
- Warreth, A.; Elkareimi, Y. All-ceramic restorations: A review of the literature. Saudi Dent. J. 2020, 32, 365–372. [Google Scholar] [CrossRef]
- Bona, A.D.; Pecho, O.E.; Alessandretti, R. Zirconia as a Dental Biomaterial. Materials 2015, 8, 4978–4991. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.M.; Peng, T.Y.; Wu, Y.A.; Hsieh, C.F.; Chi, M.C.; Wu, H.Y.; Lin, Z.C. Comparison of Optical Properties and Fracture Loads of Multilayer Monolithic Zirconia Crowns with Different Yttria Levels. J. Funct. Biomater. 2024, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Kongkiatkamon, S.; Rokaya, D.; Kengtanyakich, S.; Peampring, C. Current classification of zirconia in dentistry: An updated review. PeerJ 2023, 11, e15669. [Google Scholar] [CrossRef]
- Alammar, A.; Blatz, M.B. The resin bond to high-translucent zirconia—A systematic review. J. Esthet. Restor. Dent. 2022, 34, 117–135. [Google Scholar] [CrossRef]
- Miura, S.; Fujita, T.; Fujisawa, M. Zirconia in fixed prosthodontics: A review of the literature. Odontology 2025, 113, 466–487. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Wang, J.; Huang, Y.; Yu, P.; Xiong, Y.; Yu, H.; Gao, S. Effects of Hydrofluoric Acid Concentration and Etching Time on the Bond Strength to Ceramic-coated Zirconia. J. Adhes. Dent. 2022, 24, 125–136. [Google Scholar] [CrossRef]
- Lawson, N.C.; Jurado, C.A.; Huang, C.T.; Morris, G.P.; Burgess, J.O.; Liu, P.R.; Kinderknecht, K.E.; Lin, C.P.; Givan, D.A. Effect of Surface Treatment and Cement on Fracture Load of Traditional Zirconia (3Y), Translucent Zirconia (5Y), and Lithium Disilicate Crowns. J. Prosthodont. 2019, 28, 659–665. [Google Scholar] [CrossRef]
- Noronha, M.D.S.; Fronza, B.M.; André, C.B.; de Castro, E.F.; Soto-Montero, J.; Price, R.B.; Giannini, M. Effect of zirconia decontamination protocols on bond strength and surface wettability. J. Esthet. Restor. Dent. 2020, 32, 521–529. [Google Scholar] [CrossRef]
- Śmielak, B.; Klimek, L.; Wojciechowski, R.; Bąkała, M. Effect of zirconia surface treatment on its wettability by liquid ceramics. J. Prosthet. Dent. 2019, 122, 410.e1–410.e6. [Google Scholar] [CrossRef]
- Wongsue, S.; Thanatvarakorn, O.; Prasansuttiporn, T.; Nimmanpipug, P.; Sastraruji, T.; Hosaka, K.; Foxton, R.M.; Nakajima, M. Effect of surface topography and wettability on shear bond strength of Y-TZP ceramic. Sci. Rep. 2023, 13, 18249. [Google Scholar] [CrossRef]
- Jiang, Y.; Bao, X.; Yu, Y.; Zhang, Y.; Liu, M.; Meng, F.; Wang, B.; Chen, J. Effects of different plasma treatments on bonding properties of zirconia. Heliyon 2024, 10, e32493. [Google Scholar] [CrossRef] [PubMed]
- Joukhadar, C.; Osman, E.; Rayyan, M.; Shrebaty, M. Comparison between different surface treatment methods on shear bond strength of zirconia (in vitro study). J. Clin. Exp. Dent. 2020, 12, e264–e270. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ji, Y.; Yan, J.; Hu, X.; Zhang, Q.; Liu, M.; Zhang, F. Atomic layer deposition SiO2 films over dental ZrO2 towards strong adhesive to resin. J. Mech. Behav. Biomed. Mater. 2021, 114, 104197. [Google Scholar] [CrossRef]
- Kang, L.L.; Chuang, S.F.; Li, C.L.; Lin, J.C.; Lai, T.W.; Wang, C.C. Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization. Materials 2022, 15, 5568. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Safwat, A.; Aboushelib, M. The effect of fusion sputtering surface treatment on microshear bond strength of zirconia and MDP-containing resin cement. Dent. Mater. 2019, 35, e107–e112. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Tamada, Y.; Yoshida, Y.; Meerbeek, B.V. Ultra-structure and bonding properties of tribochemical silica-coated zirconia. Dent. Mater. J. 2019, 38, 107–113. [Google Scholar] [CrossRef]
- Pakkala, A.; Putkonen, M. Atomic layer deposition. In Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd ed.; Martin, P.M., Ed.; William Andrew: Norwich, NY, USA, 2010; pp. 364–388. [Google Scholar]
- de la Rosa-Fox, N.; Morales-Flórez, V.; Piñero, M.; Esquivias, L. Nanostructured sonogels. Key Eng. Mater. 2009, 391, 45–74. [Google Scholar] [CrossRef]
- Su, Z.; Li, M.; Zhang, L.; Wang, C.; Zhang, L.; Xu, J.; Fu, B. A novel porous silica-zirconia coating for improving bond performance of dental zirconia. J. Zhejiang Univ. Sci. B 2021, 22, 214–222. [Google Scholar] [CrossRef]
- Ans, A.; Dressaire, E.; Colnet, B.; Poulard, C. Dip-coating of suspensions. Soft Matter 2019, 15, 252–261. [Google Scholar] [CrossRef]
- Wasa, K. Sputtering phenomena. In Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS, 2nd ed.; Wasa, K., Kanno, I., Kotera, H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ritala, M.; Leskelä, M. Atomic layer deposition. In Handbook of Thin Films: Vol. 1. Deposition and Processing of Thin Films; Nalwa, H.S., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 103–159. [Google Scholar] [CrossRef]
- El-Shrkawy, Z.R.; El-Hosary, M.M.; Saleh, O.; Mandour, M.H. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic. Future Dent. J. 2016, 2, 41–53. [Google Scholar] [CrossRef]
- Borouziniat, A.; Majidinia, S.; Shirazi, A.S.; Kahnemuee, F. Comparison of bond strength of self-adhesive and self-etch or total-etch resin cement to zirconia: A systematic review and meta-analysis. J. Conserv. Dent. Endod. 2024, 27, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Al Kheraif, A.A.; Jamaluddin, S.; Elsharawy, M.; Divakar, D.D. Recent Trends in Surface Treatment Methods for Bonding Composite Cement to Zirconia: A Review. J. Adhes. Dent. 2017, 19, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Heboyan, A.; Vardanyan, A.; Karobari, M.I.; Marya, A.; Avagyan, T.; Tebyaniyan, H.; Mustafa, M.; Rokaya, D.; Avetisyan, A. Dental Luting Cements: An Updated Comprehensive Review. Molecules 2023, 28, 1619. [Google Scholar] [CrossRef]
- Makkar, S.; Malhotra, N. Self-adhesive resin cements: A new perspective in luting technology. Dent. Update 2013, 40, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Pilo, R.; Dimitriadi, M.; Palaghia, A.; Eliades, G. Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia. Dent. Mater. 2018, 34, 306–316. [Google Scholar] [CrossRef]
- Manso, A.P.; Carvalho, R.M. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements. Dent. Clin. North Am. 2017, 61, 821–834. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.L.; Ferracane, J.L.; Powers, J.M. Materials for adhesion and luting. In Craig’s Restorative Dental Materials, 14th ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 273–294. [Google Scholar] [CrossRef]
- Ansari, S.; Jahedmanesh, N.; Cascione, D.; Zafarnia, P.; Shah, K.C.; Wu, B.M.; Moshaverinia, A. Effects of an etching solution on the adhesive properties and surface microhardness of zirconia dental ceramics. J. Prosthet. Dent. 2018, 120, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Øilo, M.; Haugli, K.; Rønold, H.J.; Ulsund, A.H.; Ruud, A.; Kvam, K. Pre-cementation procedures’ effect on dental zirconias with different yttria content. Dent. Mater. 2021, 37, 1425–1436. [Google Scholar] [CrossRef]
- Stefani, A.; Brito, R.B., Jr.; Kina, S.; Andrade, O.S.; Ambrosano, G.M.; Carvalho, A.A.; Giannini, M. Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers. J. Prosthodont. 2016, 25, 380–385. [Google Scholar] [CrossRef]
- Li, X.; Liang, S.; Inokoshi, M.; Zhao, S.; Hong, G.; Yao, C.; Huang, C. Different surface treatments and adhesive monomers for zirconia-resin bonds: A systematic review and network meta-analysis. Jpn. Dent. Sci. Rev. 2024, 60, 175–189. [Google Scholar] [CrossRef]
- ISO 29022:2013; Dentistry—Adhesion—Notched-Edge Shear Bond Strength Test. ISO: Geneva, Switzerland, 2013.
- Queiroz, J.R.; Massi, M.; Nogueira, L., Jr.; Sobrinho, A.S.; Bottino, M.A.; Ozcan, M. Silica-based nano-coating on zirconia surfaces using reactive magnetron sputtering: Effect on chemical adhesion of resin cements. J. Adhes. Dent. 2013, 15, 151–159. [Google Scholar] [CrossRef]
- ISO/TS 11405:2015; Dental Materials—Testing of Adhesion to Tooth Structure. ISO: Geneva, Switzerland, 2015.
- Erdem, A.; Akar, G.C.; Erdem, A.; Kose, T. Effects of different surface treatments on bond strength between resin cements and zirconia ceramics. Oper. Dent. 2014, 39, E118–E127. [Google Scholar] [CrossRef]
- Rigos, A.E.; Sarafidou, K.; Kontonasaki, E. Zirconia bond strength durability following artificial aging: A systematic review and meta-analysis of in vitro studies. Jpn. Dent. Sci. Rev. 2023, 59, 138–159. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. ISO: Geneva, Switzerland, 2019.
- ISO 10365:2022; Adhesives—Designation of Main Failure Patterns. ISO: Geneva, Switzerland, 2022.
- Thammajaruk, P.; Blatz, M.B.; Buranadham, S.; Guazzato, M.; Wang, Y. Shear bond strength of composite cement to alumina-coated versus tribochemical silica-treated zirconia. J. Mech. Behav. Biomed. Mater. 2020, 105, 103710. [Google Scholar] [CrossRef]
- de Figueiredo, V.M.G.; Silva, A.M.; Massi, M.; da Silva Sobrinho, A.S.; de Queiroz, J.R.C.; Machado, J.P.B.; do Prado, R.F.; Junior, L.N. Effect of the nanofilm-coated zirconia ceramic on resin cement bond strength. J. Dent. Res. Dent. Clin. Dent. Prospect. 2022, 16, 170–178. [Google Scholar] [CrossRef]
- Lin, J.; Shinya, A.; Gomi, H.; Shinya, A. Effect of self-adhesive resin cement and tribochemical treatment on bond strength to zirconia. Int. J. Oral Sci. 2010, 2, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.; Hooshmand, T.; Heidari, S.; Khoshro, K. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements. Lasers Med. Sci. 2016, 31, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yu, C.; Qi, C.; Qiu, D.; Zhang, S.; Li, J.; Hu, Y. Effect of femtosecond laser and silica coating on the bond strength of zirconia ceramic. Philos. Mag. 2020, 119, 276–283. [Google Scholar] [CrossRef]
- Akyil, M.S.; Uzun, I.H.; Bayindir, F. Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed. Laser Surg. 2010, 28, 801–808. [Google Scholar] [CrossRef]
- Subaşı, M.G.; Inan, Ö. Influence of surface treatments and resin cement selection on bonding to zirconia. Lasers Med. Sci. 2014, 29, 19–27. [Google Scholar] [CrossRef]
- Liu, D.; Pow, E.H.N.; Tsoi, J.K.; Matinlinna, J.P. Evaluation of four surface coating treatments for resin to zirconia bonding. J. Mech. Behav. Biomed. Mater. 2014, 32, 300–309. [Google Scholar] [CrossRef]
- Gomes, A.L.; Ramos, J.C.; Santos-del Riego, S.; Montero, J.; Albaladejo, A. Thermocycling effect on microshear bond strength to zirconia ceramic using Er:YAG and tribochemical silica coating as surface conditioning. Lasers Med. Sci. 2015, 30, 787–795. [Google Scholar] [CrossRef]
- Román-Rodríguez, J.L.; Fons-Font, A.; Amigó-Borrás, V.; Granell-Ruiz, M.; Busquets-Mataix, D.; Panadero, R.A.; Solá-Ruiz, M.F. Bond strength of selected composite resin-cements to zirconium-oxide ceramic. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e115–e123. [Google Scholar] [CrossRef]
- Shin, Y.J.; Shin, Y.; Yi, Y.A.; Kim, J.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments. Scanning 2014, 36, 479–486. [Google Scholar] [CrossRef]
- da Silva, E.M.; Miragaya, L.; Sabrosa, C.E.; Maia, L.C. Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water. J. Prosthet. Dent. 2014, 112, 568–575. [Google Scholar] [CrossRef]
- Yenisey, M.; Dede, D.Ö.; Rona, N. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics. J. Prosthodont. Res. 2016, 60, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Re, D.; Augusti, G.; Merlati, G.; Giannì, A.B.; Augusti, D. Effect of thermal cycling and low pressure sandblasting on the bond strength of a self-adhesive cement to Y-TZP zirconia. J. Adhes. Sci. Technol. 2015, 29, 1745–1757. [Google Scholar] [CrossRef]
- Campos, T.M.; Ramos, N.C.; Machado, J.P.; Bottino, M.A.; Souza, R.O.; Melo, R.M. A new silica-infiltrated Y-TZP obtained by the sol-gel method. J. Dent. 2016, 48, 55–61. [Google Scholar] [CrossRef]
- Zanatta, R.F.; Esper, M.Á.L.R.; Pucci, C.R.; Borges, A.B.; Torres, C.R.G. Effects of different surface treatments of zirconia on the bond strength of self-adhesive resinous cement. J. Adhes. Sci. Technol. 2016, 31, 21–30. [Google Scholar] [CrossRef]
- Vicente Prieto, M.; Gomes, A.L.C.; Montero Martín, J.; Alvarado Lorenzo, A.; Seoane Mato, V.; Albaladejo Martínez, A. The Effect of Femtosecond Laser Treatment on the Effectiveness of Resin-Zirconia Adhesive: An In Vitro Study. J. Lasers Med. Sci. 2016, 7, 214–219. [Google Scholar] [CrossRef]
- Skienhe, H.; Habchi, R.; Ounsi, H.; Ferrari, M.; Salameh, Z. Evaluation of the Effect of Different Types of Abrasive Surface Treatment before and after Zirconia Sintering on Its Structural Composition and Bond Strength with Resin Cement. Biomed. Res. Int. 2018, 2018, 1803425. [Google Scholar] [CrossRef]
- Karami Zarandi, P.; Madani, A.; Bagheri, H.; Moslemion, M. The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements. J. Dent. 2020, 21, 63–68. [Google Scholar] [CrossRef]
- Souza-Filho, C.B.; Moris, I.C.M.; Colucci, V.; Faria, A.C.L.; Gomes, É.A. Is the Er:YAG laser affect the surface characteristics and bond strength of Y-TZP? Braz. Dent. J. 2021, 32, 83–92. [Google Scholar] [CrossRef]
- Peçanha, M.M.; Amaral, M.; Baroudi, K.; Frizzera, F.; Vitti, R.; Silva-Concilio, L. Improving the bonding stability between resin cements and zirconia-based ceramic using different surface treatments. Int. J. Prosthodont. 2022, 35, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, S.B.; Hatton, B.D.; Bastos-Bitencourt, N.A.; Dos Santos, D.M.; Pesqueira, A.A.; De Souza, G.M. Silica deposition on zirconia via room-temperature atomic layer deposition (RT-ALD): Effect on bond strength to veneering ceramic. J. Mech. Behav. Biomed. Mater. 2022, 129, 105142. [Google Scholar] [CrossRef] [PubMed]
- Sarıkaya, I.; Hayran, Y. Adhesive bond strength of monolithic zirconia ceramic finished with various surface treatments. BMC Oral Health 2023, 23, 858. [Google Scholar] [CrossRef]
- Moon, J.-E.; Kim, S.-H.; Lee, J.-B.; Han, J.-S.; Yeo, I.-S.; Ha, S.-R. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement. Ceram. Int. 2016, 42, 1552–1562. [Google Scholar] [CrossRef]
- Shen, D.; Wang, H.; Shi, Y.; Su, Z.; Hannig, M.; Fu, B. The Effect of Surface Treatments on Zirconia Bond Strength and Durability. J. Funct. Biomater. 2023, 14, 89. [Google Scholar] [CrossRef]
- Aurélio, I.L.; Marchionatti, A.M.; Montagner, A.F.; May, L.G.; Soares, F.Z. Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis. Dent. Mater. 2016, 32, 827–845. [Google Scholar] [CrossRef]
- Garcia Fonseca, R.; de Oliveira Abi-Rached, F.; dos Santos Nunes Reis, J.M.; Rambaldi, E.; Baldissara, P. Effect of particle size on the flexural strength and phase transformation of an airborne-particle abraded yttria-stabilized tetragonal zirconia polycrystal ceramic. J. Prosthet. Dent. 2013, 110, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Łagodzińska, P.; Dejak, B.; Krasowski, M.; Konieczny, B. The Influence of Alumina Airborne-Particle Abrasion with Various Sizes of Alumina Particles on the Phase Transformation and Fracture Resistance of Zirconia-Based Dental Ceramics. Materials 2023, 16, 5419. [Google Scholar] [CrossRef] [PubMed]
- Pozzobon, J.L.; Wandscher, V.F.; Rippe, M.P.; Valandro, L.F. Influence of zirconia surface treatments on resin cement bonding and phase transformation. J. Adhes. Sci. Technol. 2017, 31, 1671–1682. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Wille, S.; Polonskyi, O.; Köbel, S.; Trottenberg, T.; Bornholdt, S.; Haase, F.; Kersten, H.; Kern, M. Effect of surface treatments on the properties and morphological change of dental zirconia. J. Prosthet. Dent. 2016, 115, 341–349. [Google Scholar] [CrossRef]
- Chowdhury, K.; Mandal, R. SnO2 thin film deposition using atomic layer deposition technique: Properties and applications. In Comprehensive Materials Processing, 2nd ed.; Hashmi, M.S.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 4, pp. 151–162. [Google Scholar] [CrossRef]
- Simon, A.H. Sputter processing. In Handbook of Thin Film Deposition, 3rd ed.; Seshan, K., Ed.; William Andrew Publishing: Norwich, NY, USA, 2012; pp. 55–88. [Google Scholar] [CrossRef]
- Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Film formation. In Sol-Gel Science: The Physics and Chemistry of Sol–Gel Processing; Academic Press: San Diego, CA, USA, 1990; pp. 787–837. [Google Scholar] [CrossRef]
- Fardad, M.A. Catalysts and the structure of SiO2 sol-gel films. J. Mater. Sci. 2000, 35, 1835–1841. [Google Scholar] [CrossRef]
- Madani, A.; Nakhaei, M.; Karami, P.; Rajabzadeh, G.; Salehi, S.; Bagheri, H. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain. Int. J. Nanomed. 2016, 11, 3215–3223. [Google Scholar] [CrossRef]
- Brinker, C.J. Dip coating. In Chemical Solution Deposition of Functional Oxide Thin Films; Schneller, T., Waser, R., Kosec, M., Payne, D., Eds.; Springer: Vienna, Austria, 2013; pp. 233–261. [Google Scholar] [CrossRef]
- Patil, S.L.; Sankapal, S.R.; Almuntaser, F.M.A. Dip Coating: Simple Way of Coating Thin Films. In Simple Chemical Methods for Thin Film Deposition; Springer: Singapore, 2023; pp. 425–447. [Google Scholar] [CrossRef]
- Shimizu, Y.; Tupin, S.; Kiyomitsu, C.; Kitamura, K.; Takashima, K.; Ohta, M. Development of a stereo dip-coating system for fabrication of tube-shaped blood vessel models. Sci. Rep. 2020, 10, 63718. [Google Scholar] [CrossRef] [PubMed]
- Thammajaruk, P.; Inokoshi, M.; Chong, S.; Guazzato, M. Bonding of composite cements to zirconia: A systematic review and meta-analysis of in vitro studies. J. Mech. Behav. Biomed. Mater. 2018, 80, 258–268. [Google Scholar] [CrossRef]
- Chen, C.; Li, S.; Ou, M.E.; Li, Y.; Sun, Q. The Effect of Nano-Silica Surface Infiltration on Bond Strength of a Phosphate-Monomer-containing Composite Cement to Zirconia. J. Adhes. Dent. 2023, 25, 79–86. [Google Scholar] [CrossRef]
- Özdemir, H.; Yanikoğlu, N.; Sağsöz, N. Effect of MDP-Based Silane and Different Surface Conditioner Methods on Bonding of Resin Cements to Zirconium Framework. J. Prosthodont. 2019, 28, 79–84. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Barreto, S.C.; Alfrisany, N.M.; Porto, T.S.; De Souza, G.M.; De Goes, M.F. Effect of silane and MDP-based primers on physico-chemical properties of zirconia and its bond strength to resin cement. Dent. Mater. 2019, 35, 1557–1567. [Google Scholar] [CrossRef]
- Roman, T.; Cournault, B.; Teyagirwa, P.F.; Erkel, A.; Levratto, F.; Jean, R.; Romain, C.; Jmal, H.; Etienne, O. Shear bond strength between standard or modified zirconia surfaces and two resin cements incorporating or not 10-MDP in their matrix. Dent. Mater. 2024, 40, 370–378. [Google Scholar] [CrossRef]
- Sevilla, P.; Gseibat, M.; Peláez, J.; Suárez, M.J.; López-Suárez, C. Effect of Surface Treatments with Low-Pressure Plasma on the Adhesion of Zirconia. Materials 2023, 16, 6055. [Google Scholar] [CrossRef]
- Kang, C.M.; Wu, S.H.; Feng, S.W.; Wei, C.; Peng, T.Y. Enhancing surface energy and characterizing optical properties of ultra-high translucency zirconia via an innovative heat treatment process. J. Prosthodont. 2025; Online ahead of print. [Google Scholar] [CrossRef]
Experimental Group Results (MPa) | Resin Cement Used in the Study | Adhesive Promoter | ||||||
---|---|---|---|---|---|---|---|---|
Author/Year | Control Group (No Treatment/APA) | Other Surface Treatments | Silica Coating | |||||
Akyil [53] | NT + AP APA + AP | 17.02 23.46 | LS Er:YAG + AP, LS Nd:YAG + AP, LS CO2 + AP, APA+ LS Er:YAG + AP, APA + LS Nd:YAG + AP, APA + LS CO2 +AP, | 19.69 15.62 22.35 14.85 20.82 19.30 | TBS + AP | 23.39 | Clearfil Esthetic (Kuraray, Okayama, Japan) | Clearfil Ceramic Primer (Kuraray, Okayama, Japan) |
Lin [50] | NT | 16.7 | TBS TBS + AP | 31.17 50.21 | Maxcem (Kerr, Orange, CA, USA) Smartcem (Dentsply, York, PA, USA) Rely X Unicem (3M ESPE, Seefeld, Germany) Breeze (Pentron clinical, Orange, CA, USA) Biscem (Bisco, Schaumburg, IL, USA) Set (SDI, Bayswater, VIC, Australia) Clearfil SA luting (Kuraray, Okayama, Japan) | Clearfil ceramic primer (Kuraray, Okayama, Japan) | ||
Subaşı [54] | NT APA | 0.22 0.74 | LS Er:YAG APA + LS Er:YAG | 0.34 0.75 | TBS | 0.35 | Relyx U100 (3M ESPE, Seefeld, Germany) Clearfil Esthetic (Kuraray, Okayama, Japan) | No |
Queiroz [42] | NT NT + AP APA + AP | 3.1 5.7 16.3 | PC + AP | 9.7 | Multilink (Ivoclar-Vivadent, Schaan, Liechtenstein) Panavia F (Kuraray, Okayama, Japan) Relyx U100 (3M ESPE, Seefeld, Germany) | Monobons S (Ivoclar Vivadent, Schaan, Liechtenstein) Metal/zirconia primer (Ivoclar Vivadent, Schaan, Liechtenstein) | ||
Liu [55] | NT + AP APA + AP | 8.8 19.7 | VC ZPC | 15.9 14. 7 | SCD + AP | 19.2 | RelyX Unicem (3M ESPE, Seefeld, Germany) | RelyX Ceramic Primer (3M ESPE, Seefeld, Germany) |
Gomes [56] | NT | 7.5 | LS Er:YAG | 5.7 | TBS + AP LS Er:YAG + TBS + AP | 17.3 18.9 | BiFix SE (Voco, Cuxhaven, Germany) Clearfil SA (Kuraray, Okayama, Japan) | RelyX Ceramic Primer (3M ESPE, Seefeld, Germany) |
Román-Rodriguez [57] | PA + AP | 14.9 | VC | 27.21 | TBS + AP | 13.44 | Panavia F2.0 (Kuraray, Okayama, Japan) Panavia V5 (Kuraray, Okayama, Japan) | No |
Erdem [44] | NT APA | 3.0 14.8 | LS Er:YAG | 5.0 | TBS + AP | 19.8 | Panavia F 2.0 (Kuraray, Okayama, Japan) Relyx U 100 (3M ESPE, Seefeld, Germany) Clearfill Esthetic (Kuraray, Okayama, Japan) Super-bond C&B (Sun Medical Co. Moriyama, Shiga, Japan) Multilink Automix (Ivovlar-Vivadent, Schaan, Liechtenstein) | No |
Shin [58] | NT APA NT + AP APA + AP | 4.11 6.98 8.47 14.12 | TBS + AP | 7.21 | Panavia F 2.0 (Kuraray, Okayama, Japan) Clearfil SA (Kuraray, Okayama, Japan) | Z-Prime Plus (Bisco, Schaumburg, IL, USA) Sil (3M ESPE, Seefeld, Germany) | ||
Da Silva [59] | NT AP | 16.0 36.2 | TBS + AP | 37.4 | RelyX ARC (3M ESPE, Seefeld, Germany) Relyx Unicem (3M ESPE, Seefeld, Germany) | Alloy primer (Kuraray, Okayama, Japan) Espe Sil (3M ESPE, Seefeld, Germany) | ||
Yenisey [60] | NT AP APA APA + AP | 4.62 5.55 4.89 7.26 | APA + LS Er:YAG + AP | 6.70 | APA + TBS + AP | 11.19 | Panavia F2.0 (Kuraray, Okayama, Japan) | No |
Re [61] | NT APA | 13.29 16.24 | TBS | 17.1 | Clearfil SA (Kuraray, Okayama, Japan) | No | ||
Mahmoodi [51] | NT APA | LS Nd:YAG | TBS + AP | Panavia F2.0 (Kuraray, Okayama, Japan) Clearfil SA (Kuraray, Okayama, Japan) | Monobond S (Ivoclar Vivadent, Schaan, Liechtenstein) | |||
Campos [62] | NT + AP | 11.64 | SG + AP | 3.31 | Variolink II (Ivoclar Vivadent, Schaan, Liechtenstein) | Monobond Plus (Ivoclar Vivadent, Schaan, Liechtenstein) Monobond S (Ivoclar Vivadent, Schaan, Liechtenstein) | ||
El-Shrkawy [27] | NT + AP APA + AP | 6.1 13.2 | PT + AP | 17.8 | PC + AP | 19.6 | Multilink (3M ESPE, Seefeld, Germany) | Metal/zirconia primer (not specified) |
Zanatta [63] | NT APA | 7.28 13.31 | LS Nd:YAG | 20.99 | TBS + AP | 18.05 | RelyX U200 (3M ESPE) Bifix SE (Voco, Cuxhaven, Germany) | Ceramic Bond (Voco, Cuxhaven, Germany) |
Vicente Prieto [64] | NT APA | 4.4 3.6 | LS Femtosecond laser | 10.8 | TBS + AP | 9.5 | Clearfil SA (Kuraray, Okayama, Japan) | RelyX deramic primer (3M ESPE, Seefeld, Germany) |
Skienhe [65] | NT + AP APA + AP | 11.58 17.59 | SCD + AP | 12.07 | RelyX Ultimate (3M ESPE, Seefeld, Germany) | Scotchbond Universal (3M ESPE, Seefeld, Germany) | ||
Zhou [52] | NT + AP APA + AP | 8.83 10.74 | LS Femtosecond laser + AP | 13.76 | PC + AP APA + PC + AP LS + PC + AP | 9.26 9.84 13.51 | Multilink N (Ivoclar Vivadent, Schaan, Liechtenstein) | Monobond N (Ivoclar Vivadent, Schaan, Liechtenstein) |
Karami Zarandi [66] | NT + AP APA + AP | 10.63 18.25 | IC (silica) + AP IC (aluminosilicate) +AP | 17.98 21.66 | Clearfil SA (Kuraray, Okayama, Japan) | Clearfil SE (Kuraray, Okayama, Japan) Clearfil porcelain bond activator (Kuraray, Okayama, Japan) | ||
Su [23] | NT APA + AP | 4.35 12.27 | IC + AP | 21.28 | RelyX Ultimate (3M ESPE, Seefeld, Germany) | Monobond N (Ivovlar Vivadent, Schaan, Liechtenstein) Z-Prime (Bisco, Schaumburg, IL, USA) | ||
Yan [18] | NT + AP | 7.05 | SG + AP SCD + AP ALD + AP | 8.07 8.58 16.49 | Choice 2 (Bisco, Schaumburg, IL, USA) | Bis-Silane (Bisco, Schaumburg, IL, USA) | ||
Souza-Filho [67] | NT + AP | 5.6 | LS Er:YAG 1 + AP LS Er:YAG 2 + AP LS Er:YAG 3 + AP | 5.7 4.6 4.3 | TBS + AP | 8.4 | PanaviaF 2.0 (Kuraray, Okayama, Japan) RelyX U200 (3M ESPE, Seefeld, Germany) | RelyX ceramic Primer (3M ESPE, Seefeld, Germany) |
de Figueiredo [49] | NT + AP | 9.2 | OT (fluorine nanofilm) + AP | 11.1 | TBS + AP SCD + AP | 19.0 3.6 | Panavia F (Kuraray, Okayama, Japan) | Clearfil SE (Kuraray, Okayama, Japan) |
Peçanha [68] | NT APA APA + AP | 7.61 10.1 9.56 | TBS + AP TBS + AP(MDP) | 12.6 10.4 | Panavia F 2.0 (Kuraray, Okayama, Japan) RelyX U200 (3M ESPE, Seefeld, Germany) | RelyX ceramic Primer (3M ESPE, Seefeld, Germany) Alloy Primer (Kuraray, Okayama, Japan) | ||
Bitencourt [69] | NT APA | 9.83 26.75 | ALD | 26.23 | Multilink (Ivoclar Vivadent, Schaan, Liechtenstein) | No | ||
Sarıkaya [70] | NT + AP APA + AP | 11.2 11.28 | OT (hot acid solution) + AP OT (Aluminum Nitrite) + AP | 18.06 8.79 | TBS + AP | 10.43 | Panavia F 2.0 (Kuraray, Okayama, Japan) RelyX Unicem (3M ESPE, Seefeld, Germany) | Clearfill ceramic primer (Kuraray, Okayama, Japan) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Hernández, L.C.; Jiménez-Borrego, L.C.; Roa, N.S. Effectiveness of Silica Coatings in Enhancing Resin Cement Adhesion to Zirconia: A Systematic Review. Dent. J. 2025, 13, 426. https://doi.org/10.3390/dj13090426
Lara-Hernández LC, Jiménez-Borrego LC, Roa NS. Effectiveness of Silica Coatings in Enhancing Resin Cement Adhesion to Zirconia: A Systematic Review. Dentistry Journal. 2025; 13(9):426. https://doi.org/10.3390/dj13090426
Chicago/Turabian StyleLara-Hernández, Laura C., Luis C. Jiménez-Borrego, and Nelly S. Roa. 2025. "Effectiveness of Silica Coatings in Enhancing Resin Cement Adhesion to Zirconia: A Systematic Review" Dentistry Journal 13, no. 9: 426. https://doi.org/10.3390/dj13090426
APA StyleLara-Hernández, L. C., Jiménez-Borrego, L. C., & Roa, N. S. (2025). Effectiveness of Silica Coatings in Enhancing Resin Cement Adhesion to Zirconia: A Systematic Review. Dentistry Journal, 13(9), 426. https://doi.org/10.3390/dj13090426