Collagen-Composite Scaffolds for Alveolar Bone and Dental Tissue Regeneration: Advances in Material Development and Clinical Applications—A Narrative Review
Abstract
1. Introduction
2. Collagen as a Biomaterial
2.1. Composition and Structure
2.2. Biological Properties
2.2.1. Biodegradability
2.2.2. Bioactivity
2.2.3. Hydrophilicity
Material | Source | Physical Properties | Chemical Properties | Applications | Ref. |
---|---|---|---|---|---|
Collagen Type I | Collagen (animal/human), HA (bone-derived) and PLGA, PCL (lab-made for consistency). | Porosity, elasticity, tunable degradation rate. | Dictates bioactivity, immune response, and degradation. | Periodontal tissue and bone regeneration. Guided tissue regeneration scaffolds (GTR). Regeneration of dental pulp. | [21] |
Hydroxyapatite (HA) | Natural bone, synthetically produced (Sol–gel method). | Hard, crystalline, bioactive ceramic, highly porous. | Calcium phosphate (Ca10(PO4)6(OH)2). | Improves bone regeneration, enhancing collagen scaffolds. Applied in dental prosthetics and management of bones. Supports reconstructions of tooth trauma. | [22] |
β-Tricalcium Phosphate (β-TCP) | Natural sources like bone or synthetic (Sol–gel method). | Porous, biocompatible, resorbable. | Calcium phosphate (Ca3(PO4)2). | Bone regeneration and repair. Enhances scaffold strength and degradation control. Used in periodontal tissue engineering and alveolar bone repair. | [23,24] |
Poly(lactic-co-glycolic acid) (PLGA) | Synthetic polymer (lactic and glycolic acid). | Biodegradable, flexible, tunable mechanical properties, low toxicity, form porous structure. | Amphiphilic nature, biodegradable, biocompatible. | Composite collagen scaffolds. Controlled drug and growth factor release. Soft tissue repair. | [25] |
Polycaprolactone (PCL) | Synthetic polymer (petroleum-based). | Biodegradable, flexible, high mechanical strength, slow degradation. | Aliphatic polyester, biodegradable, non-toxic. | Used for long-term scaffolding applications. Supports bone and periodontal ligament regeneration. Commonly blended with collagen. | [26] |
Polyethylene Glycol (PEG) | Synthetic polymer. | Hydrophilic, forms hydrogels, can be crosslinked, enhances mechanical properties. | Ethylene glycol monomer, non-immunogenic, used for modifying the surface of scaffolds. | Used to improve scaffold mechanical properties. Can form hydrogels to support cell delivery and growth factors. Tissue engineering applications. | [27,28] |
Genipin | Derived from gardenia fruits. | Crosslinking agent, biocompatible, enhances mechanical stability. | Crosslinker for proteins, aldehyde-containing molecule. | Used in collagen scaffolds to improve mechanical properties. Reduces degradation rate of collagen scaffolds. | [29] |
Growth Factors (BMP, VEGF, FGF) | Naturally occurring proteins in the body. | Protein molecules, bioactive, water-soluble. | Regulate cell growth, differentiation, and tissue repair. | Delivery in scaffolds to promote cell differentiation and tissue healing. Used in periodontal tissue regeneration and alveolar bone healing. | [30] |
Nanocellulose | Derived from plant-based materials. | High tensile strength, biodegradable, hydrophilic, high surface area. | Cellulose fibrils, biocompatible, supports cell adhesion. | Can be used for reinforcing collagen scaffolds. Potential for enhancing mechanical properties of scaffolds while being environmentally friendly. | [31,32] |
Bioactive Glass | Naturally occurring minerals, synthetic. | Hard, highly bioactive, osteoconductive, forms a bond with bone tissue. | Silicate-based glass, reacts with body fluids to form hydroxyapatite. | Bone regeneration scaffolds. Enhances mineralization in dental tissue engineering. Used in dental implants and alveolar bone healing. | [33] |
3. Collagen-Based Biomaterials in Dental Tissue Engineering
3.1. Types of Collagen-Based Matrices
3.1.1. Pure Collagen Scaffolds
3.1.2. Composite Collagen Scaffolds
3.1.3. Crosslinked Collagen Matrices
3.2. Fabrication Techniques
3.2.1. Freeze-Drying (Lyophilization)
3.2.2. Electrospinning
3.2.3. Three-Dimensional (3D) Bioprinting
3.2.4. Self-Assembly and Gelation
3.3. Physical and Mechanical Characteristics of Collagen-Based Scaffolds in Dental Tissue Engineering
4. Applications in Dental Tissue Regeneration
4.1. Pulp Regeneration
4.2. Periodontal Tissue Engineering
4.3. Alveolar Bone Regeneration
4.4. Enamel Repair (Emerging)
5. Biological Performance and In Vitro Studies
6. Clinical Applications and Trials
6.1. Periodontal Surgery and Guided Tissue Regeneration (GTR)
6.2. Injectable Collagen Hydrogels
6.3. Composite Collagen Scaffolds for Alveolar Ridge Augmentation
6.4. Limitations and Clinical Challenges
6.5. Ongoing and Future Clinical Directions
7. Challenges and Limitations
7.1. Mechanical Weakness
7.2. Batch-to-Batch Variability Due to Natural Sources
7.3. Rapid Enzymatic Degradation and Premature Scaffold Loss
7.4. Immunogenicity and Biocompatibility Concerns
7.5. Sterilization Challenges Affecting Collagen Integrity
8. Advances and Future Directions
8.1. Functionalization and Composite Development
8.2. Advanced Fabrication Techniques
8.3. Stem Cell and Growth Factor Delivery
8.4. Personalized and Smart Biomaterials
9. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Park, C.H. Biomaterial-based approaches for regeneration of periodontal ligament and cementum using 3D platforms. Int. J. Mol. Sci. 2019, 20, 4364. [Google Scholar] [CrossRef]
- Abou Neel, E.A.; Chrzanowski, W.; Salih, V.M.; Kim, H.-W.; Knowles, J.C. Tissue engineering in dentistry. J. Dent. 2014, 42, 915–928. [Google Scholar] [CrossRef]
- Alkhursani, S.A.; Ghobashy, M.M.; Al-Gahtany, S.A.; Meganid, A.S.; Abd El-Halim, S.M.; Ahmad, Z.; Khan, F.S.; Atia, G.A.N.; Cavalu, S. Application of nano-inspired scaffolds-based biopolymer hydrogel for bone and periodontal tissue regeneration. Polymers 2022, 14, 3791. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Kulawik, M.; Kwiatek, J.; Bikiaris, D.; Cielecka-Piontek, J. Novel Applications of Natural Biomaterials in Dentistry—Properties, Uses, and Development Perspectives. Materials 2025, 18, 2124. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, H.; Mu, M.; Ye, R.; Zhou, L.; Guo, G. Recent development and advances on polysaccharide composite scaffolds for dental and dentoalveolar tissue regeneration. Polym. Rev. 2025, 65, 47–103. [Google Scholar] [CrossRef]
- Akobundu, U.U.; Ifijen, I.H.; Duru, P.; Igboanugo, J.C.; Ekanem, I.; Fagbolade, M.; Ajayi, A.S.; George, M.; Atoe, B.; Matthews, J.T. Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: A public health perspective. RSC Adv. 2025, 15, 10902–10957. [Google Scholar] [CrossRef]
- Sousa, A.C.; Alvites, R.; Lopes, B.; Sousa, P.; Moreira, A.; Coelho, A.; Santos, J.D.; Atayde, L.; Alves, N.; Maurício, A.C. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J. Funct. Biomater. 2025, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Kishen, A.; Cecil, A.; Chitra, S. Fabrication of hydroxyapatite reinforced polymeric hydrogel membrane for regeneration. Saudi Dent. J. 2023, 35, 678–683. [Google Scholar] [CrossRef]
- Khuntia, A.; Dash, S.; Swain, S.S.; Sahoo, S.K. Three dimensional bioprinted models for drug screening cancer metastasis and prognosis study. 3D Bioprinting Cancer Appl. 2025, 285–308. [Google Scholar] [CrossRef]
- Abedi, M.; Shafiee, M.; Afshari, F.; Mohammadi, H.; Ghasemi, Y. Collagen-based medical devices for regenerative medicine and tissue engineering. Appl. Biochem. Biotechnol. 2024, 196, 5563–5603. [Google Scholar] [CrossRef]
- Alberts, A.; Bratu, A.G.; Niculescu, A.-G.; Grumezescu, A.M. Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications. Gels 2025, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Nimni, M.E.; Harkness, R.D. Molecular structure and functions of collagen. In Collagen; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–78. [Google Scholar]
- Branco, F.; Cunha, J.; Mendes, M.; Sousa, J.J.; Vitorino, C. 3D Bioprinting Models for Glioblastoma: From Scaffold Design to Therapeutic Application. Adv. Mater. 2025, 37, 2501994. [Google Scholar] [CrossRef] [PubMed]
- Bandzerewicz, A.; Gadomska-Gajadhur, A. Into the tissues: Extracellular matrix and its artificial substitutes: Cell signalling mechanisms. Cells 2022, 11, 914. [Google Scholar] [CrossRef] [PubMed]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.M.R.; Motta, A.; Fauzi, M.B. A comprehensive review on collagen type I development of biomaterials for tissue engineering: From biosynthesis to bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Srivastava, D.; Grover, S.; Sharma, V. Biomaterials in tooth tissue engineering: A review. J. Clin. Diagn. Res. JCDR 2014, 8, 309. [Google Scholar] [CrossRef]
- Hsu, S.-h.; Hung, K.-C.; Chen, C.-W. Biodegradable polymer scaffolds. J. Mater. Chem. B 2016, 4, 7493–7505. [Google Scholar] [CrossRef]
- Kirillova, A.; Yeazel, T.R.; Asheghali, D.; Petersen, S.R.; Dort, S.; Gall, K.; Becker, M.L. Fabrication of biomedical scaffolds using biodegradable polymers. Chem. Rev. 2021, 121, 11238–11304. [Google Scholar] [CrossRef]
- Cheah, C.W.; Al-Namnam, N.M.; Lau, M.N.; Lim, G.S.; Raman, R.; Fairbairn, P.; Ngeow, W.C. Synthetic material for bone, periodontal, and dental tissue regeneration: Where are we now, and where are we heading next? Materials 2021, 14, 6123. [Google Scholar] [CrossRef]
- Giannetti, G.; Matsumura, F.; Caporaletti, F.; Micha, D.; Koenderink, G.H.; Ilie, I.M.; Bonn, M.; Woutersen, S.; Giubertoni, G. Water and Collagen: A Mystery Yet to Unfold. Biomacromolecules 2025, 26, 2784–2799. [Google Scholar] [CrossRef]
- Xiao, J. Hierarchical Structure of Collagen. In Collagen Mimetic Peptides and Their Biophysical Characterization; Springer: Berlin/Heidelberg, Germany, 2024; pp. 25–45. [Google Scholar]
- Alex, Y.; Vincent, S.; Divakaran, N.; Uthappa, U.; Srinivasan, P.; Mubarak, S.; Al-Harthi, M.A.; Dhamodharan, D. Pioneering bone regeneration: A review of cutting-edge scaffolds in tissue engineering. Bioprinting 2024, 43, e00364. [Google Scholar] [CrossRef]
- Tavoni, M.; Dapporto, M.; Tampieri, A.; Sprio, S. Bioactive calcium phosphate-based composites for bone regeneration. J. Compos. Sci. 2021, 5, 227. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate (CaPO4) containing composites for biomedical applications: Formulations, properties, and applications. J. Compos. Sci. 2024, 8, 218. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of poly (lactic-co-glycolic acid) and progress of poly (lactic-co-glycolic acid)-based biodegradable materials in biomedical research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sudhakara, P.; Singh, J.; Ilyas, R.; Asyraf, M.; Razman, M. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers 2021, 13, 2623. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Lv, Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef]
- Jurczak, P.; Lach, S. Hydrogels as Scaffolds in Bone-Related Tissue Engineering and Regeneration. Macromol. Biosci. 2023, 23, 2300152. [Google Scholar] [CrossRef]
- Hajiabbas, M.; Okoro, O.V.; Delporte, C.; Shavandi, A. Proteins and polypeptides as biomaterials inks for 3D printing. In Handbook of the Extracellular Matrix: Biologically-Derived Materials; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–34. [Google Scholar]
- Bian, D.; Wu, Y.; Song, G. Basic fibroblast growth factor combined with extracellular matrix-inspired mimetic systems for effective skin regeneration and wound healing. Mater. Today Commun. 2023, 35, 105876. [Google Scholar] [CrossRef]
- Azril, A.; Jeng, Y.-R.; Nugroho, A. Plant-based cellulose fiber as biomaterials for biomedical application: A Short Review. J. Fibers Polym. Compos. 2023, 2, 1–17. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019, 21, 4839–4867. [Google Scholar] [CrossRef]
- Barreto, M.E.; Medeiros, R.P.; Shearer, A.; Fook, M.V.; Montazerian, M.; Mauro, J.C. Gelatin and bioactive glass composites for tissue engineering: A review. J. Funct. Biomater. 2022, 14, 23. [Google Scholar] [CrossRef]
- Wilk, S.; Benko, A. Advances in fabricating the electrospun biopolymer-based biomaterials. J. Funct. Biomater. 2021, 12, 26. [Google Scholar] [CrossRef]
- Hsieh, D.-J.; Srinivasan, P. Protocols for accelerated production and purification of collagen scaffold and atelocollagen from animal tissues. BioTechniques 2020, 69, 220–225. [Google Scholar] [CrossRef]
- Mallick, M.; Are, R.P.; Babu, A.R. An overview of collagen/bioceramic and synthetic collagen for bone tissue engineering. Materialia 2022, 22, 101391. [Google Scholar] [CrossRef]
- Senthil, R.; Anitha, R.; Lakshmi, T. Mineralized collagen fiber-based dental Implant: Novel perspectives. J. Adv. Oral Res. 2024, 15, 62–69. [Google Scholar] [CrossRef]
- Yu, S.; Shu, X.; Chen, L.; Wang, C.; Wang, X.; Jing, J.; Yan, G.; Zhang, Y.; Wu, C. Construction of ultrasonically treated collagen/silk fibroin composite scaffolds to induce cartilage regeneration. Sci. Rep. 2023, 13, 20168. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, K.; Belchenko, D.; Motta, A.; Tan, W. Evaluation of composition and crosslinking effects on collagen-based composite constructs. Acta Biomater. 2010, 6, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Wosicka-Frąckowiak, H.; Poniedziałek, K.; Woźny, S.; Kuprianowicz, M.; Nyga, M.; Jadach, B.; Milanowski, B. Collagen and its derivatives serving biomedical purposes: A review. Polymers 2024, 16, 2668. [Google Scholar] [CrossRef]
- Patil, V.A.; Masters, K.S. Engineered collagen matrices. Bioengineering 2020, 7, 163. [Google Scholar] [CrossRef]
- Liu, G.; Agarwal, R.; Ko, K.; Ruthven, M.; Sarhan, H.; Frampton, J. Templated assembly of collagen fibers directs cell growth in 2D and 3D. Sci. Rep. 2017, 7, 9628. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Dong, Y. Collagen-based biomaterials for tissue engineering. ACS Biomater. Sci. Eng. 2023, 9, 1132–1150. [Google Scholar] [CrossRef]
- Katrilaka, C.; Karipidou, N.; Petrou, N.; Manglaris, C.; Katrilakas, G.; Tzavellas, A.N.; Pitou, M.; Tsiridis, E.E.; Choli-Papadopoulou, T.; Aggeli, A. Freeze-drying process for the fabrication of collagen-based sponges as medical devices in biomedical engineering. Materials 2023, 16, 4425. [Google Scholar] [CrossRef] [PubMed]
- Pallela, R.; Venkatesan, J.; Janapala, V.R.; Kim, S.K. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J. Biomed. Mater. Res. Part A 2012, 100, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.J.; Reucroft, I.M.; Grota, M.C.; Shreiber, D.I. Production of highly aligned collagen scaffolds by freeze-drying of self-assembled, fibrillar collagen gels. ACS Biomater. Sci. Eng. 2016, 2, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Dewle, A.; Pathak, N.; Rakshasmare, P.; Srivastava, A. Multifarious fabrication approaches of producing aligned collagen scaffolds for tissue engineering applications. ACS Biomater. Sci. Eng. 2020, 6, 779–797. [Google Scholar] [CrossRef]
- Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F.J.; Abbaspourrad, A.; Greiner, R. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Adv. 2017, 7, 28951–28964. [Google Scholar] [CrossRef]
- Kim, Y.B.; Lee, H.; Kim, G.H. Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a collagen/genipin-bioink and an optimal 3D printing process. ACS Appl. Mater. Interfaces 2016, 8, 32230–32240. [Google Scholar] [CrossRef]
- Jeong, H.-J.; Gwak, S.-J.; Seo, K.D.; Lee, S.; Yun, J.-H.; Cho, Y.-S.; Lee, S.-J. Fabrication of three-dimensional composite scaffold for simultaneous alveolar bone regeneration in dental implant installation. Int. J. Mol. Sci. 2020, 21, 1863. [Google Scholar] [CrossRef]
- Aksel, H.; Sarkar, D.; Lin, M.H.; Buck, A.; Huang, G.T.-J. Cell-derived extracellular matrix proteins in colloidal microgel as a self-assembly hydrogel for regenerative endodontics. J. Endod. 2022, 48, 527–534. [Google Scholar] [CrossRef]
- De Leon-Oliva, D.; Boaru, D.L.; Perez-Exposito, R.E.; Fraile-Martinez, O.; García-Montero, C.; Diaz, R.; Bujan, J.; García-Honduvilla, N.; Lopez-Gonzalez, L.; Álvarez-Mon, M. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels 2023, 9, 885. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, D.; Liu, Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 2020, 12, 6. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Xu, Y.; Fan, C.; Li, Z.A.; Zheng, L.; Luo, B.; Li, Z.-P.; Lin, B.; Zha, Z.-G. Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing. Bioact. Mater. 2024, 32, 149–163. [Google Scholar] [CrossRef]
- Ali, M.A.; Hu, C.; Yttri, E.A.; Panat, R. Recent advances in 3D printing of biomedical sensing devices. Adv. Funct. Mater. 2022, 32, 2107671. [Google Scholar] [CrossRef]
- Zong, C.; Van Holm, W.; Bronckaers, A.; Zhao, Z.; Čokić, S.; Aktan, M.K.; Castro, A.B.; Van Meerbeek, B.; Braem, A.; Willems, G. Biomimetic periodontal ligament transplantation activated by gold nanoparticles protects alveolar bone. Adv. Healthc. Mater. 2023, 12, 2300328. [Google Scholar] [CrossRef]
- Binlateh, T.; Thammanichanon, P.; Rittipakorn, P.; Thinsathid, N.; Jitprasertwong, P. Collagen-based biomaterials in periodontal regeneration: Current applications and future perspectives of plant-based collagen. Biomimetics 2022, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Aytac, Z.; Dubey, N.; Daghrery, A.; Ferreira, J.A.; de Souza Araújo, I.J.; Castilho, M.; Malda, J.; Bottino, M.C. Innovations in craniofacial bone and periodontal tissue engineering–from electrospinning to converged biofabrication. Int. Mater. Rev. 2022, 67, 347–384. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, G.; Widbiller, M.; Galler, K.M. Clinical perspectives of pulp regeneration. J. Endod. 2020, 46, S161–S174. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, D.B.; Diogo, P.; Gomes, B.P.; Peça, J.; Santos, J.M.M. Scaffolds for dentin–pulp complex regeneration. Medicina 2023, 60, 7. [Google Scholar] [CrossRef]
- Huang, T.-H.; Chen, J.-Y.; Suo, W.-H.; Shao, W.-R.; Huang, C.-Y.; Li, M.-T.; Li, Y.-Y.; Li, Y.-H.; Liang, E.-L.; Chen, Y.-H. Unlocking the Future of Periodontal Regeneration: An Interdisciplinary Approach to Tissue Engineering and Advanced Therapeutics. Biomedicines 2024, 12, 1090. [Google Scholar] [CrossRef]
- Lin, Z.; Nica, C.; Sculean, A.; Asparuhova, M.B. Enhanced wound healing potential of primary human oral fibroblasts and periodontal ligament cells cultured on four different porcine-derived collagen matrices. Materials 2020, 13, 3819. [Google Scholar] [CrossRef]
- Sheikh, Z.; Qureshi, J.; Alshahrani, A.M.; Nassar, H.; Ikeda, Y.; Glogauer, M.; Ganss, B. Collagen based barrier membranes for periodontal guided bone regeneration applications. Odontology 2017, 105, 1–12. [Google Scholar] [CrossRef]
- Bunyaratavej, P.; Wang, H.L. Collagen membranes: A review. J. Periodontol. 2001, 72, 215–229. [Google Scholar] [CrossRef]
- Marian, D.; Toro, G.; D’Amico, G.; Trotta, M.C.; D’Amico, M.; Petre, A.; Lile, I.; Hermenean, A.; Fratila, A. Challenges and Innovations in Alveolar Bone Regeneration: A Narrative Review on Materials, Techniques, Clinical Outcomes, and Future Directions. Medicina 2024, 61, 20. [Google Scholar] [CrossRef]
- Ho, K.-N.; Salamanca, E.; Chang, K.-C.; Shih, T.-C.; Chang, Y.-C.; Huang, H.-M.; Teng, N.-C.; Lin, C.-T.; Feng, S.-W.; Chang, W.-J. A novel HA/β-TCP-collagen composite enhanced new bone formation for dental extraction socket preservation in beagle dogs. Materials 2016, 9, 191. [Google Scholar] [CrossRef]
- Palmer, L.C.; Newcomb, C.J.; Kaltz, S.R.; Spoerke, E.D.; Stupp, S.I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 2008, 108, 4754–4783. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, P.; Ali, S.; Yadalam, P.K.; Mosaddad, S.A.; Heboyan, A. Development, characterisation, biocompatibility, and corrosion analysis of gadolinium and selenium doped bioactive glass surface coating for dental implants. J. Oral Maxillofac. Surg. Med. Pathol. 2025, 37, 462–469. [Google Scholar]
- Rao, S.; Surya, S.; Ali, S.; Prabhu, A.; Ginjupalli, K.; Shenoy, P.U.; Das, R.; BT, N. Biocompatibility of polymethyl methacrylate heat-polymerizing denture base resin copolymerized with antimicrobial monomers. J. Prosthet. Dent. 2024, 132, 644.e1–644.e10. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.K.; Pan, Y.H.; Salamanca, E.; Lin, Y.T.; Chang, W.J. Prevention of bone resorption by HA/β-TCP+ collagen composite after tooth extraction: A case series. Int. J. Environ. Res. Public Health 2019, 16, 4616. [Google Scholar] [CrossRef]
- Singer, L.; Fouda, A.; Bourauel, C. Biomimetic approaches and materials in restorative and regenerative dentistry. BMC Oral Health 2023, 23, 105. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Wang, N.; You, X.-G.; Zhang, A.-D.; Chen, X.-G.; Liu, Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: Ongoing research and perspectives. Biomater. Sci. 2022, 10, 318–353. [Google Scholar] [CrossRef]
- Hiruthyaswamy, S.P.; Deepankumar, K. Suckerin based biomaterials for wound healing: A comparative review with natural protein-based biomaterials. Mater. Adv. 2025, 6, 1262–1277. [Google Scholar] [CrossRef]
- Zhai, X.; Geng, X.; Li, W.; Cui, H.; Wang, Y.; Qin, S. Comprehensive Review on Application Progress of Marine Collagen Cross-Linking Modification in Bone Repairs. Mar. Drugs 2025, 23, 151. [Google Scholar] [CrossRef] [PubMed]
- Adamu, N.; Umar, K.; Parveen, T.; Jaafar, N.F.; Maulana, I. Collagen-based nanocomposites for tissue engineering. In Protein-Based Nanocomposites for Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2025; pp. 147–171. [Google Scholar]
- Wang, Y.; Yan, F.; Chen, L.; Zhao, L.; Liu, M.; Ge, S.; Chen, C.Y.; Kim, D.M.; Shu, R. Crosslinked Versus Non-Crosslinked Resorbable Collagen Membranes for Periodontal Regeneration: A Multicenter, Randomized, Double-Blind, Non-Inferiority Clinical Trial. J. Periodontal Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Lee, J.-B. New Technique of Double-Layer Alveolar Ridge Preservation Using Collagen Matrix on Periodontally Collapsed Extraction Region: Proof-of-Concept Case Study. J. Clin. Med. 2025, 14, 3617. [Google Scholar] [CrossRef] [PubMed]
- Omidian, H.; Chowdhury, S.D.; Wilson, R.L. Advancements and challenges in hydrogel engineering for regenerative medicine. Gels 2024, 10, 238. [Google Scholar] [CrossRef]
- Shopova, D.; Mihaylova, A.; Yaneva, A.; Bakova, D.; Dimova-Gabrovska, M. Biofabrication approaches for peri-implantitis tissue regeneration: A focus on bioprinting methods. Prosthesis 2024, 6, 372–392. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzynski, M.; Rybak, Z.; Szymonowicz, M.; Wiglusz, R.J. Selected nanomaterials’ application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process. Nanomaterials 2020, 10, 1216. [Google Scholar] [CrossRef]
- Wu, D.T.; Munguia-Lopez, J.G.; Cho, Y.W.; Ma, X.; Song, V.; Zhu, Z.; Tran, S.D. Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. Molecules 2021, 26, 7043. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thirumalaivasan, N. Collagen-Composite Scaffolds for Alveolar Bone and Dental Tissue Regeneration: Advances in Material Development and Clinical Applications—A Narrative Review. Dent. J. 2025, 13, 396. https://doi.org/10.3390/dj13090396
Thirumalaivasan N. Collagen-Composite Scaffolds for Alveolar Bone and Dental Tissue Regeneration: Advances in Material Development and Clinical Applications—A Narrative Review. Dentistry Journal. 2025; 13(9):396. https://doi.org/10.3390/dj13090396
Chicago/Turabian StyleThirumalaivasan, Natesan. 2025. "Collagen-Composite Scaffolds for Alveolar Bone and Dental Tissue Regeneration: Advances in Material Development and Clinical Applications—A Narrative Review" Dentistry Journal 13, no. 9: 396. https://doi.org/10.3390/dj13090396
APA StyleThirumalaivasan, N. (2025). Collagen-Composite Scaffolds for Alveolar Bone and Dental Tissue Regeneration: Advances in Material Development and Clinical Applications—A Narrative Review. Dentistry Journal, 13(9), 396. https://doi.org/10.3390/dj13090396