A Micro-Computed Tomography Analysis of Void Formation in Apical Plugs Created with Calcium Silicate-Based Materials Using Various Application Techniques in 3D-Printed Simulated Immature Teeth
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Tested Materials
2.3. Scanning Procedure
2.4. Evaluation of Internal and External Voids in the Samples Using Micro-CT
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MTA | Mineral Trioxide Aggregate |
Micro-CT | Micro-Computed Tomography |
References
- Kahler, B.; Lu, J.; Taha, N.A. Regenerative endodontic treatment and traumatic dental injuries. Dent. Traumatol. 2024, 40, 618–635. [Google Scholar] [CrossRef]
- Galler, K.M. Clinical procedures for revitalization: Current knowledge and considerations. Int. Endod. J. 2016, 49, 926–936. [Google Scholar] [CrossRef]
- Mohammadi, Z. Strategies to manage permanent non-vital teeth with open apices: A clinical update. Int. Dent. J. 2011, 61, 25–30. [Google Scholar] [CrossRef]
- Souza, R.A.; Silva-Sousa, Y.T.; Colombo, S.; Lago, M.; Duarte, M.A.; Pecora, J.D. Healing of a tooth with an overinstrumented apex, extensive transportation and periapical lesion using a 5 mm calcium hydroxide apical plug: An 8-year follow-up report. Braz. Dent. J. 2012, 23, 608–611. [Google Scholar] [CrossRef]
- Campanella, V.; Di Taranto, V.; Beretta, M.; Colombo, S.; Gallusi, G. Paediatric endodontics. Part. 1: Portland Cements Apical Plug. Eur. J. Paediatr. Dent. 2020, 21, 248–250. [Google Scholar] [CrossRef]
- Beslot-Neveu, A.; Bonte, E.; Baune, B.; Serreau, R.; Aissat, F.; Quinquis, L.; Grabar, S.; Lasfargues, J.J. Mineral trioxyde aggregate versus calcium hydroxide in apexification of non vital immature teeth: Study protocol for a randomized controlled trial. Trials 2011, 12, 174. [Google Scholar] [CrossRef]
- Van Pham, K.; Tran, T.A. Effectiveness of MTA apical plug in dens evaginatus with open apices. BMC Oral Health 2021, 21, 566. [Google Scholar] [CrossRef] [PubMed]
- Roghanizadeh, L.; Fazlyab, M. Revascularization and Apical Plug in an Immature Molar. Iran. Endod. J. 2018, 13, 139–142. [Google Scholar] [CrossRef]
- Dong, X.; Xu, X. Bioceramics in Endodontics: Updates and Future Perspectives. Bioengineering 2023, 10, 354. [Google Scholar] [CrossRef] [PubMed]
- Tolibah, Y.A.; Kouchaji, C.; Lazkani, T.; Ahmad, I.A.; Baghdadi, Z.D. Comparison of MTA versus Biodentine in Apexification Procedure for Nonvital Immature First Permanent Molars: A Randomized Clinical Trial. Children 2022, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Enkel, B.; Dupas, C.; Armengol, V.; Akpe Adou, J.; Bosco, J.; Daculsi, G.; Jean, A.; Laboux, O.; LeGeros, R.Z.; Weiss, P. Bioactive materials in endodontics. Expert. Rev. Med. Devices 2008, 5, 475–494. [Google Scholar] [CrossRef]
- Mohite, P.; Ramteke, A.D.; Gupta, R.; Patil, S.; Gupta, D. Comparative evaluation of mineral trioxide aggregate and biodentine apical plug thickness on fracture resistance of immature teeth: An In vitro study. Ann. Afr. Med. 2022, 21, 198–203. [Google Scholar] [CrossRef]
- Babaki, D.; Yaghoubi, S.; Matin, M.M. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: A comprehensive and systematic literature review. Biomater. Investig. Dent. 2020, 7, 175–185. [Google Scholar] [CrossRef]
- Eldehna, A.M.; Abdelkafy, H.; Salem, N.A.; Elzahar, S.; Abdel Ghany, D.M.; Abd Allah, N.F.; El Kharadly, D.Y.; Elashiry, M.M. Micro-CT Analysis of Apical Plug Using Various Premixed Bio-ceramic Putties: An In Vitro Study. Eur. Endod. J. 2025, 10, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Malkondu, O.; Karapinar Kazandag, M.; Kazazoglu, E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed. Res. Int. 2014, 2014, 160951. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, M.S.; Abozena, N.I.; Ghouraba, R.F.; Kabbash, I.A.; El-Desouky, S.S. Clinical and radiographic evaluation of premixed bioceramic putty as an apical plug in nonvital immature anterior permanent teeth. Sci. Rep. 2025, 15, 26487. [Google Scholar] [CrossRef]
- Gok, T.; Gok, A.; Aciksoz, H.O. Assessment of gap areas of root filling techniques in teeth with 3D-printed different configurations of C-shaped root canals: A micro-computed tomography study. BMC Oral Health 2025, 25, 237. [Google Scholar] [CrossRef]
- Cruz Hondares, T.; Hao, X.; Zhao, Y.; Lin, Y.; Napierala, D.; Jackson, J.G.; Zhang, P. Antibacterial, biocompatible, and mineralization-inducing properties of calcium silicate-based cements. Int. J. Paediatr. Dent. 2024, 34, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Guillen, A.; Lopez-Garcia, S.; Rodriguez-Lozano, F.J.; Sanz, J.L.; Lozano, A.; Llena, C.; Forner, L. Comparative cytocompatibility of the new calcium silicate-based cement NeoPutty versus NeoMTA Plus and MTA on human dental pulp cells: An in vitro study. Clin. Oral Investig. 2022, 26, 7219–7228. [Google Scholar] [CrossRef]
- Sun, Q.; Meng, M.; Steed, J.N.; Sidow, S.J.; Bergeron, B.E.; Niu, L.N.; Ma, J.Z.; Tay, F.R. Manoeuvrability and biocompatibility of endodontic tricalcium silicate-based putties. J. Dent. 2021, 104, 103530. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.K.; Ye, J.R.; Nam, O.H. Evaluation of biocompatibility and bioactive potential of Well-Root PT by comparison with ProRoot MTA and Biodentine. J. Dent. Sci. 2024, 19, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.S.; Abdelsalam, N.; Fayyad, D.M. Assessment of the Number of Missing Tooth Surfaces and the Molecular Findings on the Outcomes of Vital Pulp Therapy Using 2 Calcium Silicate Materials: A Randomized Clinical Study. J. Endod. 2025, 51, 658–665. [Google Scholar] [CrossRef]
- Al-Haddad, A.; Che Ab Aziz, Z.A. Bioceramic-Based Root Canal Sealers: A Review. Int. J. Biomater. 2016, 2016, 9753210. [Google Scholar] [CrossRef]
- Chaudhari, P.S.; Chandak, M.G.; Jaiswal, A.A.; Mankar, N.P.; Paul, P. A Breakthrough in the Era of Calcium Silicate-Based Cements: A Critical Review. Cureus 2022, 14, e28562. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.I.; Lee, S.C.; Rossi-Fedele, G.; Bogen, G.; Nagendrababu, V.; Ha, W.N. Comparative Evaluation of Mineral Trioxide Aggregate Obturation Using Four Different Techniques-A Laboratory Study. Materials 2021, 14, 3126. [Google Scholar] [CrossRef]
- Aminoshariae, A.; Hartwell, G.R.; Moon, P.C. Placement of mineral trioxide aggregate using two different techniques. J. Endod. 2003, 29, 679–682. [Google Scholar] [CrossRef]
- Sisli, S.N.; Ozbas, H. Comparative Micro-computed Tomographic Evaluation of the Sealing Quality of ProRoot MTA and MTA Angelus Apical Plugs Placed with Various Techniques. J. Endod. 2017, 43, 147–151. [Google Scholar] [CrossRef]
- Celikten, B.; Oncu, A.; Koohnavard, M.; Ocak, M.; Orhan, K. Micro-CT comparative evaluation of porosity and dentin adaptation of root end filling materials applied with incremental, bulk, and ultrasonic activation techniques. Proc. Inst. Mech. Eng. H 2022, 236, 1209–1215. [Google Scholar] [CrossRef]
- Enkhbileg, N.; Kim, J.W.; Chang, S.W.; Park, S.H.; Cho, K.M.; Lee, Y. A Study on Nanoleakage of Apical Retrograde Filling of Premixed Calcium Silicate-Based Cement Using a Lid Technique. Materials 2024, 17, 2366. [Google Scholar] [CrossRef] [PubMed]
- Parashos, P.; Phoon, A.; Sathorn, C. Effect of ultrasonication on physical properties of mineral trioxide aggregate. Biomed. Res. Int. 2014, 2014, 191984. [Google Scholar] [CrossRef]
- Odabasi Tezer, E.; Buyuksungur, A.; Celikten, B.; Dursun, P.H.; Sevimay, F.S. Effects of Access Cavity Design and Placement Techniques on Mineral Trioxide Aggregate Obturation Quality in Simulated Immature Teeth: A Micro-Computed Tomography Study. Medicina 2024, 60, 878. [Google Scholar] [CrossRef]
- Pereira, I.R.; Carvalho, C.; Paulo, S.; Martinho, J.P.; Coelho, A.S.; Paula, A.B.; Marto, C.M.; Carrilho, E.; Botelho, M.F.; Abrantes, A.M.; et al. Apical Sealing Ability of Two Calcium Silicate-Based Sealers Using a Radioactive Isotope Method: An In Vitro Apexification Model. Materials 2021, 14, 6456. [Google Scholar] [CrossRef]
- Angerame, D.; De Biasi, M.; Pecci, R.; Bedini, R. Filling ability of three variants of the single-cone technique with bioceramic sealer: A micro-computed tomography study. J. Mater. Sci. Mater. Med. 2020, 31, 91. [Google Scholar] [CrossRef]
- Hammad, M.; Qualtrough, A.; Silikas, N. Evaluation of root canal obturation: A three-dimensional in vitro study. J. Endod. 2009, 35, 541–544. [Google Scholar] [CrossRef]
- Keles, A.; Alcin, H.; Kamalak, A.; Versiani, M.A. Oval-shaped canal retreatment with self-adjusting file: A micro-computed tomography study. Clin. Oral Investig. 2014, 18, 1147–1153. [Google Scholar] [CrossRef]
- Zogheib, C.; Naaman, A.; Medioni, E.; Arbab-Chirani, R. Influence of apical taper on the quality of thermoplasticized root fillings assessed by micro-computed tomography. Clin. Oral Investig. 2012, 16, 1493–1498. [Google Scholar] [CrossRef]
- Ng, Y.L.; Mann, V.; Rahbaran, S.; Lewsey, J.; Gulabivala, K. Outcome of primary root canal treatment: Systematic review of the literature -- Part 2. Influence of clinical factors. Int. Endod. J. 2008, 41, 6–31. [Google Scholar] [CrossRef]
- Drukteinis, S.; Bilvinaite, G.; Shemesh, H.; Tusas, P.; Peciuliene, V. The Effect of Ultrasonic Agitation on the Porosity Distribution in Apically Perforated Root Canals Filled with Different Bioceramic Materials and Techniques: A Micro-CT Assessment. J. Clin. Med. 2021, 10, 4977. [Google Scholar] [CrossRef] [PubMed]
- Bani, M.; Sungurtekin-Ekci, E.; Odabas, M.E. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study. Biomed. Res. Int. 2015, 2015, 359275. [Google Scholar] [CrossRef] [PubMed]
- Nepal, M.; Shubham, S.; Tripathi, R.; Khadka, J.; Kunwar, D.; Gautam, V.; Gautam, N. Spectrophotometric analysis evaluating apical microleakage in retrograde filling using GIC, MTA and biodentine: An in-vitro study. BMC Oral Health 2020, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- An, H.J.; Yoon, H.; Jung, H.I.; Shin, D.H.; Song, M. Comparison of Obturation Quality after MTA Orthograde Filling with Various Obturation Techniques. J. Clin. Med. 2021, 10, 1719. [Google Scholar] [CrossRef]
- Inada, R.N.H.; Silva, E.C.A.; Lopes, C.S.; Queiroz, M.B.; Torres, F.F.E.; da Silva, G.F.; Cerri, P.S.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Biocompatibility, bioactivity, porosity, and sealer/dentin interface of bioceramic ready-to-use sealers using a dentin-tube model. Sci. Rep. 2024, 14, 16768. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Dhillon, J.S.; Batra, M.; Saini, M. MTA versus Biodentine: Review of Literature with a Comparative Analysis. J. Clin. Diagn. Res. 2017, 11, ZG01–ZG05. [Google Scholar] [CrossRef]
- El-Ma’aita, A.M.; Qualtrough, A.J.; Watts, D.C. A micro-computed tomography evaluation of mineral trioxide aggregate root canal fillings. J. Endod. 2012, 38, 670–672. [Google Scholar] [CrossRef]
- Ghasemi, N.; Janani, M.; Razi, T.; Atharmoghaddam, F. Effect of different mixing and placement methods on the quality of MTA apical plug in simulated apexification model. J. Clin. Exp. Dent. 2017, 9, e351–e355. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Jang, Y.E.; Kim, B.S.; Pang, E.K.; Shim, K.; Jin, H.R.; Son, M.K.; Kim, Y. Effects of Ultrasonic Activation on Root Canal Filling Quality of Single-Cone Obturation with Calcium Silicate-Based Sealer. Materials 2021, 14, 1292. [Google Scholar] [CrossRef] [PubMed]
- Tolibah, Y.A.; Droubi, L.; Alkurdi, S.; Abbara, M.T.; Bshara, N.; Lazkani, T.; Kouchaji, C.; Ahmad, I.A.; Baghdadi, Z.D. Evaluation of a Novel Tool for Apical Plug Formation during Apexification of Immature Teeth. Int. J. Environ. Res. Public Health 2022, 19, 5304. [Google Scholar] [CrossRef] [PubMed]
- Biocanin, V.; Antonijevic, D.; Postic, S.; Ilic, D.; Vukovic, Z.; Milic, M.; Fan, Y.; Li, Z.; Brkovic, B.; Duric, M. Marginal Gaps between 2 Calcium Silicate and Glass Ionomer Cements and Apical Root Dentin. J. Endod. 2018, 44, 816–821. [Google Scholar] [CrossRef]
Material | Manufacturer | Composition | Mixing Method |
---|---|---|---|
Biodentine XP® | Septodont, Saint-Maur-des-Fosses, France | Powder: Tricalcium silicate, dicalcium silicate, calcium silicate, iron oxide, zirconium oxide; Liquid: calcium chloride | Capsule of pre-dosed powder and liquid, mixing with high-speed mixer at 6200 rpm |
Well-Root PT | Vericom Co., Republic of Korea | Calcium aluminosilicate, zirconium oxide, calcium aluminate, calcium sulfate, thickening agent | Premixed material in a compule (0.25 g) |
NeoPUTTY | NuSmile Ltd., Houston, TX, USA | Tricalcium and dicalcium aluminosilicate, zirconium oxide, tantalum oxide, thickening agent | Premixed material in a syringe (0.5 g) |
Group | Number of Samples | Material | Application Technique |
---|---|---|---|
Group 1 | 12 | Biodentine XP® | Manual condensation—condensation of the material—was conducted with an endodontic plugger (1 mm tip diameter), selected to fit approximately 50% of the 2 mm apical canal diameter, ensuring controlled compaction. |
Group 2 | 12 | XP-endo Shaper: The condensation of the material was completed using the XP-endo Shaper (XPS) (FKG Dentaire SA, La Chaux-de-Fonds, Switzerland). The XPS file was positioned in the canal at 1 mm shorter than the working length (20 mm) and operated at 800 rpm, 1 N·cm in a counterclockwise motion [31]. After the specified working length was reached, the file was carefully retracted from the canal while maintaining its rotary motion. | |
Group 3 | 12 | Indirect ultrasonic condensation—indirect ultrasonic activation at 25 kHz was applied to the material for 10 s by placing the shaft of an endodontic plugger (1 mm tip diameter) in contact with the ultrasonic tip, with the plugger sized to fit approximately 50% of the 2 mm apical canal diameter. | |
Group 4 | 12 | Well-Root PT | Manual condensation |
Group 5 | 12 | Rotary file condensation (XP-endo Shaper) | |
Group 6 | 12 | Indirect ultrasonic condensation | |
Group 7 | 12 | NeoPUTTY | Manual condensation |
Group 8 | 12 | Rotary file condensation (XP-endo Shaper) | |
Group 9 | 12 | Indirect ultrasonic condensation |
Dependent Variable | Source | F-Value | p-Value |
---|---|---|---|
Internal voids | Material | 0.700 | 0.499 |
Technique | 1.205 | 0.304 | |
Interaction | 2.717 | 0.034 | |
External voids | Material | 27.266 | <0.001 |
Technique | 11.365 | <0.001 | |
Interaction | 4.169 | 0.004 | |
Total voids | Material | 14.567 | <0.001 |
Technique | 7.890 | <0.001 | |
Interaction | 3.456 | 0.012 |
Technique | ||||
---|---|---|---|---|
Materials | Manual condensation | Ultrasonic condensation | Rotary file (XP-endo Shaper) condensation | |
Internal voids (%) | ||||
Biodentine | 0.64 ± 0.36 A,a | 0.80 ± 0.51 A,a | 1.08 ± 0.55 A,a | |
NeoPutty | 0.69 ± 0.27 A,a | 0.84 ± 0.13 A,a | 0.78 ± 0.20 A,a | |
WellRoot PT | 0.93 ± 0.41 A,a | 0.92 ± 0.19 A,a | 0.74 ± 0.24 A,a | |
External voids (%) | ||||
Biodentine | 0.83 ± 0.67 A,a | 1.28 ± 0.74 A,a | 0.65 ± 0.84 A,ab | |
NeoPutty | 1.37 ± 0.57 A,a | 1.12 ± 0.78 A,a | 0.38 ± 0.16 A,a | |
WellRoot PT | 1.53 ± 0.71 A,a | 3.01 ± 1.30 B,b | 1.79 ± 0.72 A,b | |
Total voids (%) | ||||
Biodentine | 1.46 ± 1.02 A,a | 2.06 ± 1.06 A,a | 1.72 ± 1.04 A,ab | |
NeoPutty | 2.05 ± 0.63 A,a | 1.95 ± 0.76 A,a | 1.15 ± 0.53 A,a | |
WellRoot PT | 2.44 ± 0.60 A,a | 3.90 ± 1.42 B,b | 2.52 ± 0.62 A,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristov, K.; Bogovska-Gigova, R. A Micro-Computed Tomography Analysis of Void Formation in Apical Plugs Created with Calcium Silicate-Based Materials Using Various Application Techniques in 3D-Printed Simulated Immature Teeth. Dent. J. 2025, 13, 385. https://doi.org/10.3390/dj13090385
Hristov K, Bogovska-Gigova R. A Micro-Computed Tomography Analysis of Void Formation in Apical Plugs Created with Calcium Silicate-Based Materials Using Various Application Techniques in 3D-Printed Simulated Immature Teeth. Dentistry Journal. 2025; 13(9):385. https://doi.org/10.3390/dj13090385
Chicago/Turabian StyleHristov, Krasimir, and Ralitsa Bogovska-Gigova. 2025. "A Micro-Computed Tomography Analysis of Void Formation in Apical Plugs Created with Calcium Silicate-Based Materials Using Various Application Techniques in 3D-Printed Simulated Immature Teeth" Dentistry Journal 13, no. 9: 385. https://doi.org/10.3390/dj13090385
APA StyleHristov, K., & Bogovska-Gigova, R. (2025). A Micro-Computed Tomography Analysis of Void Formation in Apical Plugs Created with Calcium Silicate-Based Materials Using Various Application Techniques in 3D-Printed Simulated Immature Teeth. Dentistry Journal, 13(9), 385. https://doi.org/10.3390/dj13090385