The 2018 Classification of Periodontitis: Challenges from Clinical Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Eligibility Criteria
2.3. Screening and Data Extraction
3. Results
3.1. Study Characteristics
3.2. Agreement with Gold-Standard Diagnosis
3.3. Inter-Examiner Agreement
3.4. Intra-Examiner Agreement
3.5. Identified Factors Affecting Stage and Grade Diagnosis Accuracy or Consitency
4. Discussion
4.1. Diagnostic Performance and Examiner Background
4.2. Diagnostic Challenges Related to Staging and Grading
4.3. Staging and Grading Prognostic Value and Role in Treatment
4.4. Emerging Role of Artificial Intelligence
4.5. Strengths and Weaknesses of the 2018 Classification of Periodontitis
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz·, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Periodontol. 2018, 89, S1–S8. [Google Scholar] [CrossRef]
- Armitage, G.C. Development of a Classification System for Periodontal Diseases and Conditions. Ann. Periodontol. 1999, 4, 1–6. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Sanz, M. Implementation of the new classification of periodontal diseases: Decision-making algorithms for clinical practice and education. J. Clin. Periodontol. 2019, 46, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Marini, L.; Tonetti, M.S.; Nibali, L.; Sforza, N.M.; Landi, L.; Cavalcanti, R.; Rojas, M.A.; Pilloni, A. Implementation of a software application in staging and grading of periodontitis cases. Oral Dis. 2022, 30, 719–728. [Google Scholar] [CrossRef]
- Chang, H.-J.; Lee, S.-J.; Yong, T.-H.; Shin, N.-Y.; Jang, B.-G.; Kim, J.-E.; Huh, K.-H.; Lee, S.-S.; Heo, M.-S.; Choi, S.-C.; et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Zhao, D.; Xie, J.; Wen, H.; Liu, C.; Li, Y.; Li, W.; Wang, S. Deep learning for classifying the stages of periodontitis on dental images: A systematic review and meta-analysis. BMC Oral Health 2023, 23, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Deng, K.; Cui, Z.; Fang, Y.; Li, Y.; Lai, H.; Tonetti, M.S.; Shen, D. Clinical knowledge-guided hybrid classification network for automatic periodontal disease diagnosis in X-ray image. Med Image Anal. 2024, 99, 103376. [Google Scholar] [CrossRef] [PubMed]
- Marini, L.; Tonetti, M.S.; Nibali, L.; Rojas, M.A.; Aimetti, M.; Cairo, F.; Cavalcanti, R.; Crea, A.; Ferrarotti, F.; Graziani, F.; et al. The staging and grading system in defining periodontitis cases: Consistency and accuracy amongst periodontal experts, general dentists and undergraduate students. J. Clin. Periodontol. 2020, 48, 205–215. [Google Scholar] [CrossRef]
- Ravidà, A.; Travan, S.; Saleh, M.H.A.; Greenwell, H.; Papapanou, P.N.; Sanz, M.; Tonetti, M.; Wang, H.; Kornman, K. Agreement among international periodontal experts using the 2017 World Workshop classification of periodontitis. J. Periodontol. 2021, 92, 1675–1686. [Google Scholar] [CrossRef]
- Oh, S.-L.; Yang, J.S.; Kim, Y.J. Discrepancies in periodontitis classification among dental practitioners with different educational backgrounds. BMC Oral Health 2021, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abou-Arraj, R.V.; Kaur, M.; Alkhoury, S.; Swain, T.A.; Geurs, N.C.; Souccar, N.M. The new periodontal disease classification: Level of agreement on diagnoses and treatment planning at various dental education levels. J. Dent. Educ. 2021, 85, 1627–1639. [Google Scholar] [CrossRef]
- Abrahamian, L.; Pascual-LaRocca, A.; Barallat, L.; Valles, C.; Herrera, D.; Sanz, M.; Nart, J.; Figuero, E. Intra- and inter-examiner reliability in classifying periodontitis according to the 2018 classification of periodontal diseases. J. Clin. Periodontol. 2022, 49, 732–739. [Google Scholar] [CrossRef]
- Pakdeesettakul, S.; Charatkulangkun, O.; Lertpimonchai, A.; Wang, H.-L.; Sutthiboonyapan, P. Simple flowcharts for periodontal diagnosis based on the 2018 new periodontal classification increased accuracy and clinician confidence in making a periodontal diagnosis: A randomized crossover trial. Clin. Oral Investig. 2022, 26, 7021–7031. [Google Scholar] [CrossRef] [PubMed]
- Bumm, C.V.; Wölfle, U.C.; Keßler, A.; Werner, N.; Folwaczny, M. Influence of decision-making algorithms on the diagnostic accuracy using the current classification of periodontal diseases—A randomized controlled trial. Clin. Oral Investig. 2023, 27, 6589–6596. [Google Scholar] [CrossRef] [PubMed]
- Abdelrasoul, M.R.; Derbala, D.A.H.; Hassan, A.F. Adapting to emergent paradigm shifts: A calibration study among graduating dental students using the new classification of periodontal diseases. Saudi Dent. J. 2024, 36, 1553–1558. [Google Scholar] [CrossRef]
- Raza, M.; Abud, D.G.; Wang, J.; Shariff, J.A. Ease and practicability of the 2017 classification of periodontal diseases and conditions: A study of dental electronic health records. BMC Oral Health 2024, 24, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, M.K.; Alamry, N.; AlHarthi, S.S.; BinShabaib, M.S.; Alkheraif, G.; Alzahrani, M.; Bin Rubaian, R.; Binnjefan, S. The 2018 Classification of Periodontal Diseases: An Observational Study on Inter-examiner Agreement among Undergraduate Students. Oral Health Prev. Dent. 2024, 22, 519–524. [Google Scholar] [CrossRef]
- Marini, L.; Tomasi, C.; Gianserra, R.; Graziani, F.; Landi, L.; Merli, M.; Nibali, L.; Roccuzzo, M.; Sforza, N.M.; Tonetti, M.S.; et al. Reliability assessment of the 2018 classification case definitions of peri-implant health, peri-implant mucositis, and peri-implantitis. J. Periodontol. 2023, 94, 1461–1474. [Google Scholar] [CrossRef]
- Kornman, K.S.; Papapanou, P.N. Clinical application of the new classification of periodontal diseases: Ground rules, clarifications and “gray zones”. J. Periodontol. 2019, 91, 352–360. [Google Scholar] [CrossRef]
- Sirinirund, B.; Di Gianfilippo, R.; Yu, S.; Wang, H.; Kornman, K.S. Diagnosis of Stage III periodontitis and ambiguities of the “gray zones” in between Stage III and Stage IV. Clin. Adv. Periodontics 2021, 11, 111–115. [Google Scholar] [CrossRef]
- Sanz, M.; Papapanou, P.N.; Tonetti, M.S.; Greenwell, H.; Kornman, K. Guest Editorial: Clarifications on the use of the new classification of periodontitis. J. Clin. Periodontol. 2020, 47, 658–659. [Google Scholar] [CrossRef]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S.; Consultants, T.E.W.P.A.M.; Lambert, N.L.F. Treatment of stage I–III periodontitis—The EFP S3 level clinical practice guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef]
- Herrera, D.; Sanz, M.; Kebschull, M.; Jepsen, S.; Sculean, A.; Berglundh, T.; Papapanou, P.N.; Chapple, I.; Tonetti, M.S.; Consultant, E.W.P.A.M. Treatment of stage IV periodontitis: The EFP S3 level clinical practice guideline. J. Clin. Periodontol. 2022, 49, 4–71. [Google Scholar] [CrossRef] [PubMed]
- Ravidà, A.; Qazi, M.; Troiano, G.; Saleh, M.H.A.; Greenwell, H.; Kornman, K.; Wang, H. Using periodontal staging and grading system as a prognostic factor for future tooth loss: A long-term retrospective study. J. Periodontol. 2019, 91, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Ravidà, A.; Qazi, M.; Rodriguez, M.V.; Galli, M.; Saleh, M.H.A.; Troiano, G.; Wang, H. The influence of the interaction between staging, grading and extent on tooth loss due to periodontitis. J. Clin. Periodontol. 2021, 48, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.H.A.; Dukka, H.; Troiano, G.; Ravidà, A.; Qazi, M.; Wang, H.; Greenwell, H. Long term comparison of the prognostic performance of PerioRisk, periodontal risk assessment, periodontal risk calculator, and staging and grading systems. J. Periodontol. 2021, 93, 57–68. [Google Scholar] [CrossRef]
- Lang, N.P.; Tonetti, M.S. Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev. Dent. 2003, 1, 7–16. [Google Scholar]
- Trombelli, L.; Minenna, L.; Toselli, L.; Zaetta, A.; Checchi, L.; Checchi, V.; Nieri, M.; Farina, R. Prognostic value of a simplified method for periodontal risk assessment during supportive periodontal therapy. J. Clin. Periodontol. 2016, 44, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Page, R.C.; Martin, J.; Krall, E.A.; Mancl, L.; Garcia, R. Longitudinal validation of a risk calculator for periodontal disease. J. Clin. Periodontol. 2003, 30, 819–827. [Google Scholar] [CrossRef]
- Saleh, M.H.A.; Decker, A.; Ravidà, A.; Wang, H.; Tonetti, M. Periodontitis stage and grade modifies the benefit of regular supportive periodontal care in terms of need for retreatment and mean cumulative cost. J. Clin. Periodontol. 2023, 51, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Cui, Z.; Li, Y.; Fang, Y.; Mei, L.; Zhao, Y.; Wu, X.; Lai, H.; Tonetti, M.S.; Shen, D. PerioAI: A digital system for periodontal disease diagnosis from an intra-oral scan and cone-beam CT image. Cell Rep. Med. 2025, 6, 102186. [Google Scholar] [CrossRef] [PubMed]
- West, N.X.; Gormley, A.; Pollard, A.J.; Izzetti, R.; Marruganti, C.; Graziani, F. Evaluating the Performance and Implementation of the 2018 Classification of Periodontal Diseases: A Systematic Review and Survey. J. Clin. Periodontol. 2025, 52, 34–57. [Google Scholar] [CrossRef] [PubMed]
Authors and Year | Country | Examiners: Number and Education | Gold-Standard Diagnosis | Additional Lecture on 2018 Classification | Implementation Tools | No. of Cases | Periodontal Status |
---|---|---|---|---|---|---|---|
Marini et al., 2021 [9] | Italy | 30 total: 10 periodontal experts, 10 general dentists, 10 final-year students | 1 periodontal expert (involved in development of classification) | Detailed instructions and training on 3 cases (not in the study) | No | 25 | Stage I–IV periodontitis |
Ravidà et al., 2021 [10] | USA | 103 periodontal experts | 5 periodontal experts (involved in development of classification) | No | No | 9 | Stage II–IV periodontitis |
Oh et al., 2021 [11] | USA | 64 total: 31 periodontal faculty/postgraduate students, 33 non-periodontal postgraduate students | 3 periodontal experts | No | Questionnaire with closed and open-ended questions | 3 | Stage II–IV periodontitis |
Abou-Array et al., 2021 [12] | USA | 131 total: 57 second-year students, 45 fourth-year students, 17 ortho postgraduate students (OS), 12 perio postgraduate students (PS) | 2 periodontal experts | 1 lecture one month before examination | No | 10 | Health (normal/ reduced periodontium), gingivitis, Stage I–IV periodontitis |
Abrahamian et al., 2022 [13] | Spain | 174 periodontal experts and postgraduate students | 7 internationally recognized periodontal experts | No | Algorithm by Tonetti and Sanz (2019) [4] | 5 | Stage III–IV periodontitis |
Pakdeesettakul et al., 2022 [14] | Thailand | 152 total: periodontal experts, postgraduate students, fifth-year students | 6 periodontal experts | No | Consensus report (Group A); simplified flowchart (Group B) | 25 | Health, gingivitis, Stage I–IV periodontitis |
Bumm et al., 2023 [15] | Germany | 83 dental students: 43 w/o experience, 40 with experience | Consensus of the investigators | 2 regular 45 min lectures; test group had extra 45 min on Tonetti and Sanz algorithm | Algorithm by Tonetti and Sanz (2019) [4] for Group B only | 2 | Stage III periodontitis |
Marini et al., 2024 [5] | Italy | 10 general dentists | 1 periodontal expert (involved in development of classification) | Detailed instructions and training on 3 cases (not in the study) | Dedicated software developed by the Italian Society of Periodontology and Implantology | 25 | Stage I–IV periodontitis |
Roshdy Abdelrasoul et al., 2024 [16] | Saudi Arabia | 52 senior-year dental students | 2 periodontal experts | Introductive seminar (2018 vs. 1999), discussion, pre- and post-tests | No | 12 | Stage I–IV periodontitis |
Raza et al., 2024 [17] | USA | 1 periodontal expert | 3 periodontal experts | No | No | 336 | Gingivitis, Stage I–IV periodontitis |
Alshehari et al., 2024 [18] | Saudi Arabia | 52 fourth- and fifth-year dental students | 1 periodontal expert | Course during third year | No | 7 (only 1 sextant presented) | Stage I–IV periodontitis |
Authors and Year | Agreement with Gold Standard (% or OR) | |||
---|---|---|---|---|
Stage | Extent | Grade | Overall | |
Marini et al., 2021 [9] | UG: 81.6%/GD: 64.4%/PE: 82% | UG: 87.6%/GD: 76.4%/PE: 84% | UG: 74.4%/GD: 67.6%/PE: 72.4% | UG: 53.6%/GD: 37.6%/PE: 50.4% |
Ravidà et al., 2021 [10] | 76.6% | 84.8% | 82% | - |
Oh et al., 2021 [11] | Case 1: P 52% / NP 48% Case 2: P 68%/ NP 64% Case 3: P 94%/ NP 73% | - | Case 1: P 72%/ NP 42% Case 2: P 81% / NP 73% Case 3: P 39% / NP 33% | - |
Abou-Array et al., 2021 [12] | - | - | - | - |
Abrahamian et al., 2022 [13] | UF: 71.4%/SC: 65.6%/PG: 68.2%/Total: 68.7% | UF: 76.1%/SC: 70.0%/PG: 77.7% / Total: 75.5% | UF: 80.8%/SC: 86.1%/PG: 82.3%/Total: 82.4% | - |
Pakdeesettakul et al., 2022 [14] | - | - | - | Flowcharts: 88.21% No flowcharts: 87.26% |
Bumm et al., 2023 [15] | Experience: OR 3.704/Algorithm: OR 4.425 | Experience: OR 1.664/Algorithm: OR 1.767 | Experience: OR 6.993/Algorithm: OR 30.303 | Experience: OR 4.132/Algorithm: OR 11.905 |
Marini et al., 2024 [5] | 74.4% | 82.8% | 84.0% | 53.6% |
Roshdy Abdelrasoul et al., 2024 [16] | - | - | - | Pre-test: 63.8% ± 14.8%/Post-test: 75.6% ± 12.7% |
Raza et al., 2024 [17] | 90% | 100% | 100% | - |
Alshehri et al., 2024 [18] | Fourth year: 56.57%/fifth year: 59.79% | - | Fourth year: 68.57%/fifth year: 75.6% | - |
Authors and Year | Inter-examiner Agreement [kappa (k) or %] | Intra-examiner Agreement [kappa (k), ICC or %] | ||||||
---|---|---|---|---|---|---|---|---|
Stage | Extent | Grade | Overall | Stage | Extent | Grade | Overall | |
Marini et al., 2021 [9] | UG: k = 0.65 / GD: k = 0.36 / PE: k = 0.58 | UG: k = 0.64 / GD: k = 0.31 / PE: k = 0.36 | UG: k = 0.52 / GD: k = 0.44 / PE: k = 0.42 | - | UG: k = 0.95 / GD: k = 0.92 / PE: k = 0.82 | UG: k = 0.98 / GD: k = 0.79 / PE: k = 0.88 | UG: k = 0.88 / GD: k = 0.86 / PE: k = 0.87 | - |
Ravidà et al., 2021 [10] | k = 0.49 | k = 0.51 | k = 0.50 | k = 0.48 | - | - | - | - |
Oh et al., 2021 [11] | - | - | - | P: k = 0.41 / NP: k = 0.28 / Total: k = 0.34 | - | - | - | Total: k = 0.34 |
Abou-Array et al., 2021 [12] | - | - | - | - | - | - | - | D2: k = 0.24 / D4: k = 0.26 / OS: k = 0.30 / PS: k = 0.55/Total: k = 0.24 |
Abrahamian et al., 2022 [13] | 68.7% | 75.5% | 82.4% | - | k = 0.71 (82.3%) | k = 0.52 (83%) | k = 0.85 (91.4%) | - |
Pakdeesettakul et al., 2022 [14] | - | - | - | - | - | - | - | Flowcharts: 58.26%/No flowcharts: 55.84% |
Bumm et al., 2023 [15] | - | - | - | - | Experience: 52.4%/Algorithm: 80.5% | Experience: 73.8%/Algorithm: 82.9% | Experience: 50.0%/Algorithm: 95.1% | - |
Marini et al., 2024 [5] | k = 0.81 | k = 0.60 | k = 0.63 | - | - | - | - | - |
Roshdy Abdelrasoul et al., 2024 [16] | - | - | - | Pre-test: k = 0.215 Post-test: k = 0.427 | - | - | - | - |
Raza et al., 2024 [17] | - | - | - | - | - | - | - | - |
Alshehri et al., 2024 [18] | - | - | - | - | - | - | - | - |
Authors and Year | Factors Affecting Staging | Factors Affecting Grading | Other Findings |
---|---|---|---|
Marini et al., 2021 [9] | - Stage most often overestimated - Borderline cases less consistently and accurately diagnosed - Extent often underestimated | - Grade often underestimated - Bone loss/age associated with less consistency and accuracy | - General dentists performed less well - Staging easier than grading and extent - Almost perfect consistency over time - Moderate consistency across examiners |
Ravidà et al., 2021 [10] | - Stage severity based on interdental CAL; only CAL attributable to periodontitis should be used - Hopeless teeth included in teeth lost count - Stages III and IV share essential identifiers; Stage IV needs added-complexity factors - Stage I or II cases cannot be upshifted based only on complexity - Generalized extent only if >30% of teeth show defining characteristics | - | - |
Oh et al., 2021 [11] | - Fair to moderate agreement - Non-periodontists badly accustomed to 2018 classification | - Grading more difficult without previous records; main parameter: bone loss/age ratio | - 74% of periodontal cohort used 2018 classification exclusively - 79% of non-periodontal cohort unaware or not using the 2018 classification |
Abou-Array et al., 2021 [12] | - Stage often overdiagnosed - Difficulties distinguishing Stage I and differentiating Stages III and IV - Localized periodontitis often underdiagnosed | - | - Tendency to prioritize stage over grade and extent |
Abrahamian et al., 2022 [13] | - Difficulty distinguishing stage III and IV due to hopeless teeth and complexity factors like masticatory dysfunction - Extent assessment should follow stage determination | Grade is easiest to assess | - New classification successfully diagnoses periodontitis cases with high concordance - Easier to correctly assign grade > extent > stage - Neither current position nor experience influenced outcomes |
Pakdeesettakul et al., 2022 [14] | - | - | - Flowcharts improved clinician confidence - Most diagnostic errors were minor details, especially in periodontitis cases |
Bumm et al., 2023 [15] | - Experience and algorithm usage influence staging - Sole use of CAL may underestimate loss in previously treated patients - Assessment of extent not influenced by experience/algorithm | - Experience and algorithm usage influence grading | - Algorithms may aid implementation of current classification among operators with different experience levels |
Marini et al., 2024 [5] | - Stage overestimation may occur because only a single site meeting a specific criterion (e.g., one probing depth >6 mm) is sufficient to escalate the diagnosis from Stage II to Stage III - Extent overestimation often describes the overall periodontitis distribution rather than accurately defining the stage | - Grade overestimation is frequently linked to clinical phenotype evaluation, where the degree of tissue destruction relative to the amount of plaque has a significant impact on grading | - General dentists could benefit from digital support tools to assist in accurately assigning stage and grade - Failure to achieve a correct diagnosis could be primarily attributed to improper data entry - Staging and grading should be approached as a critical diagnostic process rather than merely a “box-checking” task |
Roshdy Abdelrasoul et al., 2024 [16] | - Insufficient training in 2018 classification (dominant 1999 classification also among teachers) - COVID-19 influenced insufficient clinical practice - Difficulty in differentiating stage III and IV | - | - The training process has the potential to enhance inter-examiner agreement compared with the gold standard |
Raza et al., 2024 [17] | - Number of teeth lost without previous records can increase stage | - Differentiation between bone loss and bone remodeling for grading | - Practical to retroactively diagnose patients previously diagnosed with 1999 AAP/CDC classification using the 2017 AAP/EFP system |
Alshehari et al., 2024 [18] | - One sextant evaluation influenced staging due to limited clinical experience of undergraduates | - One sextant evaluation influenced grading similarly | - High inter-examiner agreement among fourth- and fifth-year undergraduates using the 2018 classification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielewski, M.; Pilloni, A.; Cuozzo, A.; D’Albis, G.; D’Elia, G.; Papi, P.; Marini, L. The 2018 Classification of Periodontitis: Challenges from Clinical Perspective. Dent. J. 2025, 13, 361. https://doi.org/10.3390/dj13080361
Chmielewski M, Pilloni A, Cuozzo A, D’Albis G, D’Elia G, Papi P, Marini L. The 2018 Classification of Periodontitis: Challenges from Clinical Perspective. Dentistry Journal. 2025; 13(8):361. https://doi.org/10.3390/dj13080361
Chicago/Turabian StyleChmielewski, Marek, Andrea Pilloni, Alessandro Cuozzo, Giuseppe D’Albis, Gerarda D’Elia, Piero Papi, and Lorenzo Marini. 2025. "The 2018 Classification of Periodontitis: Challenges from Clinical Perspective" Dentistry Journal 13, no. 8: 361. https://doi.org/10.3390/dj13080361
APA StyleChmielewski, M., Pilloni, A., Cuozzo, A., D’Albis, G., D’Elia, G., Papi, P., & Marini, L. (2025). The 2018 Classification of Periodontitis: Challenges from Clinical Perspective. Dentistry Journal, 13(8), 361. https://doi.org/10.3390/dj13080361