Hyperfunctional Neutrophils in Aged Mice Are Linked to Enhanced Bone Loss in Ligature-Induced Periodontitis
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Isolation of Murine Bone Marrow Neutrophils for Chemotaxis
2.3. Peritonitis Induction (IP), Peritoneal Lavage, and Blood Collection
2.4. Neutrophil Chemotaxis Assay
2.5. PMN Superoxide Production Assay
2.6. Anti-Mouse Antibodies for Flow Cytometry
2.7. Flow Cytometry
2.8. Phagocytosis by Flow Cytometry
2.9. NETosis and CD Marker Expression by Flow Cytometry
2.10. Ligature-Induced Alveolar Bone Loss (ABL)
2.11. Statistical Analysis
3. Results
3.1. Neutrophil Chemotaxis in Young vs. Aged Mice
3.2. Neutrophil Superoxide Production in Young vs. Aged Mice
3.3. Neutrophil NETosis in Young vs. Aged Mice
3.4. Neutrophil Phagocytosis in Young vs. Aged Mice
3.5. Age-Related Alveolar Bone Loss in Ligature-Induced Periodontitis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nauseef, W.M.; Borregaard, N. Neutrophils at work. Nat. Immunol. 2014, 15, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Underhill, D.M.; Ozinsky, A. Phagocytosis of microbes: Complexity in action. Annu. Rev. Immunol. 2002, 20, 825–852. [Google Scholar] [CrossRef]
- Babior, B.M. Oxygen-dependent microbial killing by phagocytes (second of two parts). N. Engl. J. Med. 1978, 298, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Weiss, J. Antimicrobial peptides of phagocytes and epithelia. Semin. Hematol. 1997, 34, 343–354. [Google Scholar]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Adrover, J.M.; del Fresno, C.; Crainiciuc, G.; Cuartero, M.I.; Casanova-Acebes, M.; Weiss, L.A.; Huerga-Encabo, H.; Silvestre-Roig, C.; Rossaint, J.; Cossío, I.; et al. A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity 2019, 50, 390–402.e10. [Google Scholar] [CrossRef]
- Age-Dependent Dysregulation of Innate Immunity—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24157572/ (accessed on 31 January 2025).
- Effros, R.B.; Dagarag, M.; Spaulding, C.; Man, J. The role of CD8+ T-cell replicative senescence in human aging. Immunol. Rev. 2005, 205, 147–157. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef]
- Simell, B.; Vuorela, A.; Ekström, N.; Palmu, A.; Reunanen, A.; Meri, S.; Käyhty, H.; Väkeväinen, M. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine 2011, 29, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- Didier, E.S.; Sugimoto, C.; Bowers, L.C.; Khan, I.A.; Kuroda, M.J. Immune correlates of aging in outdoor-housed captive rhesus macaques (Macaca mulatta). Immun. Ageing A 2012, 9, 25. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging 2012, 4, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, A.L.; Rendon, J.L.; Ramirez, L.; Choudhry, M.A.; Kovacs, E.J. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J. Immunol. Baltim. Md. 1950 2013, 190, 746–1757. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Gavazzi, G.; Krause, K.-H. Ageing and infection. Lancet Infect. Dis. 2002, 2, 659–666. [Google Scholar] [CrossRef]
- Palacios-Pedrero, M.Á.; Jansen, J.M.; Blume, C.; Stanislawski, N.; Jonczyk, R.; Molle, A.; Hernandez, M.G.; Kaiser, F.K.; Jung, K.; Osterhaus, A.D.M.E.; et al. Signs of immunosenescence correlate with poor outcome of mRNA COVID-19 vaccination in older adults. Nat. Aging 2022, 2, 896–905. [Google Scholar] [CrossRef]
- Hornigold, K.; Chu, J.Y.; Chetwynd, S.A.; Machin, P.A.; Crossland, L.; Pantarelli, C.; Anderson, K.E.; Hawkins, P.T.; Segonds-Pichon, A.; Oxley, D.; et al. Age-related decline in the resistance of mice to bacterial infection and in LPS/TLR4 pathway-dependent neutrophil responses. Front. Immunol. 2022, 13, 888415. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, C.; Han, Y.; Gu, Z.; Sun, C. Immunosenescence, aging and successful aging. Front. Immunol. 2022, 13, 942796. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, G.; Manwani, D.; Mortha, A.; Xu, C.; Faith, J.J.; Burk, R.D.; Kunisaki, Y.; Jang, J.-E.; Scheiermann, C.; et al. Neutrophil ageing is regulated by the microbiome. Nature 2015, 525, 528–532. [Google Scholar] [CrossRef]
- Ritzel, R.M.; Lai, Y.-J.; Crapser, J.D.; Patel, A.R.; Schrecengost, A.; Grenier, J.M.; Mancini, N.S.; Patrizz, A.; Jellison, E.R.; Morales-Scheihing, D.; et al. Aging alters the immunological response to ischemic stroke. Acta Neuropathol. 2018, 136, 89–110. [Google Scholar] [CrossRef] [PubMed]
- Uhl, B.; Vadlau, Y.; Zuchtriegel, G.; Nekolla, K.; Sharaf, K.; Gaertner, F.; Massberg, S.; Krombach, F.; Reichel, C.A. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood 2016, 128, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Page, R.C.; Kornman, K.S. The pathogenesis of human periodontitis: An introduction. Periodontology 2000 1997, 14, 9–11. [Google Scholar] [CrossRef]
- Bartold, P.M.; Van Dyke, T.E. Periodontitis: A host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontology 2000 2013, 62, 203–217. [Google Scholar] [CrossRef]
- Fine, N.; Hassanpour, S.; Borenstein, A.; Sima, C.; Oveisi, M.; Scholey, J.; Cherney, D.; Glogauer, M. Distinct Oral Neutrophil Subsets Define Health and Periodontal Disease States. J. Dent. Res. 2016, 95, 931–938. [Google Scholar] [CrossRef]
- Chadwick, J.W.; Fine, N.; Khoury, W.; Tasevski, N.; Sun, C.-X.; Boroumand, P.; Klip, A.; Glogauer, M. Tissue-specific murine neutrophil activation states in health and inflammation. J. Leukoc. Biol. 2021, 110, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Meyer, K.C.; Rosenthal, N.S.; Soergel, P.; Peterson, K. Neutrophils and low-grade inflammation in the seemingly normal aging human lung. Mech. Ageing Dev. 1998, 104, 169–181. [Google Scholar] [CrossRef]
- Caielli, S.; Banchereau, J.; Pascual, V. Neutrophils come of age in chronic inflammation. Curr. Opin. Immunol. 2012, 24, 671–677. [Google Scholar] [CrossRef]
- Sima, C.; Gastfreund, S.; Sun, C.; Glogauer, M. Rac-null leukocytes are associated with increased inflammation-mediated alveolar bone loss. Am. J. Pathol. 2014, 184, 472–482. [Google Scholar] [CrossRef]
- Kuiper, J.W.P.; Sun, C.; Magalhães, M.A.O.; Glogauer, M. Rac regulates PtdInsP₃ signaling and the chemotactic compass through a redox-mediated feedback loop. Blood 2011, 118, 6164–6171. [Google Scholar] [CrossRef] [PubMed]
- Fine, N.; Barzilay, O.; Sun, C.; Wellappuli, N.; Tanwir, F.; Chadwick, J.W.; Oveisi, M.; Tasevski, N.; Prescott, D.; Gargan, M.; et al. Primed PMNs in healthy mouse and human circulation are first responders during acute inflammation. Blood Adv. 2019, 3, 1622–1637. [Google Scholar] [CrossRef]
- Sun, C.; Forster, C.; Nakamura, F.; Glogauer, M. Filamin-A regulates neutrophil uropod retraction through RhoA during chemotaxis. PLoS ONE 2013, 8, e79009. [Google Scholar] [CrossRef] [PubMed]
- Akkaoui, J.; Yamada, C.; Duarte, C.; Ho, A.; Vardar-Sengul, S.; Kawai, T.; Movila, A. Contribution of Porphyromonas gingivalis lipopolysaccharide to experimental periodontitis in relation to aging. GeroScience 2021, 43, 367–376. [Google Scholar] [CrossRef]
- Viniegra, A.; Goldberg, H.; Çil, Ç.; Fine, N.; Sheikh, Z.; Galli, M.; Freire, M.; Wang, Y.; Van Dyke, T.; Glogauer, M.; et al. Resolving Macrophages Counter Osteolysis by Anabolic Actions on Bone Cells. J. Dent. Res. 2018, 97, 1160–1169. [Google Scholar] [CrossRef]
- Sima, C.; Aboodi, G.M.; Lakschevitz, F.S.; Sun, C.; Goldberg, M.B.; Glogauer, M. Nuclear Factor Erythroid 2-Related Factor 2 Down-Regulation in Oral Neutrophils Is Associated with Periodontal Oxidative Damage and Severe Chronic Periodontitis. Am. J. Pathol. 2016, 186, 1417–1426. [Google Scholar] [CrossRef]
- Petri, B.; Sanz, M.-J. Neutrophil chemotaxis. Cell Tissue Res. 2018, 371, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Fine, N.; Chadwick, J.; Sun, C.; Parbhakar, K.; Khoury, N.; Barbour, A.; Goldberg, M.; Tenenbaum, H.; Glogauer, M. Periodontal Inflammation Primes the Systemic Innate Immune Response. J. Dent. Res. 2021, 100, 318–325. [Google Scholar] [CrossRef]
- Nomellini, V.; Brubaker, A.L.; Mahbub, S.; Palmer, J.L.; Gomez, C.R.; Kovacs, E.J. Dysregulation of neutrophil CXCR2 and pulmonary endothelial icam-1 promotes age-related pulmonary inflammation. Aging Dis. 2012, 3, 234–247. [Google Scholar]
- Williams, A.E.; José, R.J.; Brown, J.S.; Chambers, R.C. Enhanced inflammation in aged mice following infection with Streptococcus pneumoniae is associated with decreased IL-10 and augmented chemokine production. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L539–L549. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Vitale, G.; Capri, M.; Salvioli, S. Inflammaging and “Garb-aging”. Trends Endocrinol. Metab. TEM 2017, 28, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Aging Exacerbates Neutrophil Pathogenicity in Ischemic Stroke—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/31927534/ (accessed on 31 January 2025).
- Logan, S.; Royce, G.H.; Owen, D.; Farley, J.; Ranjo-Bishop, M.; Sonntag, W.E.; Deepa, S.S. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience 2019, 41, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Sczepanik, F.S.C.; Grossi, M.L.; Casati, M.; Goldberg, M.; Glogauer, M.; Fine, N.; Tenenbaum, H.C. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontology 2000 2020, 84, 45–68. [Google Scholar] [CrossRef]
- Kolaczkowska, E. The older the faster: Aged neutrophils in inflammation. Blood 2016, 128, 2280–2282. [Google Scholar] [CrossRef]
- Li, M.; Fukagawa, N.K. Age-related changes in redox signaling and VSMC function. Antioxid. Redox Signal. 2010, 12, 641–655. [Google Scholar] [CrossRef]
- Farr, J.N.; Xu, M.; Weivoda, M.M.; Monroe, D.G.; Fraser, D.G.; Onken, J.L.; Negley, B.A.; Sfeir, J.G.; Ogrodnik, M.B.; Hachfeld, C.M.; et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 2017, 23, 1072–1079. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Liu, F.; Yao, Y.; Huang, Y.; Luo, L.; Wang, Q.; Chen, B.; Hu, H. Gut microbiota and metabolic profile changes unveil the deterioration of alveolar bone inflammatory resorption with aging induced by D-galactose. Sci. Rep. 2024, 14, 26135. [Google Scholar] [CrossRef]
- Corrêa, J.D.; Carlos, P.; Faria, G.; Pacheco, L.; da Costa, V.; Mendes, I.; de Oliveira, A.; Colombo, A. The Healthy Oral Microbiome: A Changing Ecosystem throughout the Human Lifespan. J. Dent. Res. 2025, 104, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Belibasakis, G.N. Microbiological changes of the ageing oral cavity. Arch. Oral Biol. 2018, 96, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, Y.; Chen, L.; Liu, W.; Lin, C.; Chen, Y.; Wang, X. HGF Aggravated Periodontitis-Associated Gut Barrier and Microbial Dysfunction: Implications for Oral–Gut Axis Regulation. Biology 2025, 14, 496. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.S.; Moutsopoulos, N.M. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp. Mol. Med. 2024, 56, 1055–1065. [Google Scholar] [CrossRef]
- Giri, S.; Uehara, O.; Takada, A.; Paudel, D.; Morikawa, T.; Arakawa, T.; Nagasawa, T.; Abiko, Y.; Furuichi, Y. The effect of Porphyromonas gingivalis on the gut microbiome of mice in relation to aging. J. Periodontal Res. 2022, 57, 1256–1266. [Google Scholar] [CrossRef]
Group (Blood/100 μL) | Neutrophil (Mean ± SD) | H3cit+ Neutrophil (Mean ± SD) |
---|---|---|
Young | 0.8 ± 0.2 × 103/µL | 0.0667 ± 0.04 × 103/µL |
Aged | 0.99 ± 0.4 × 103/µL | 0.1863 ± 0.04 × 103/µL |
Young IP | 1.9 ± 0.4 × 103/µL | 0.0790 ± 0.03 × 103/µL |
Aged IP | 3.19 ± 0.2 × 103/µL | 0.7422 ± 0.04 × 103/µL |
Comparison | Neutrophil (p-value) | H3cit+ Neutrophil (p-value) |
Young vs. Aged | ns | ns |
Young vs. Young IP | 0.0118 * | <0.005 *** |
Young vs. Aged IP | <0.0001 **** | ns |
Aged vs. Young IP | 0.03 * | 0.0025 ** |
Aged vs. Aged IP | 0.0001 **** | ns |
Young IP vs. Aged IP | 0.0048 ** | ns |
Group (BM/250 μL) | Neutrophil (Mean ± SD) | H3cit+ Neutrophil (Mean ± SD) |
---|---|---|
Young | 17.552 ± 5.16 × 103/µL | 6.048 ± 1.96 × 103/µL |
Aged | 17.32 ± 2.92 × 103/µL | 4.788 ± 1.488 × 103/µL |
Young IP | 9.652 ± 3.8 × 103/µL | 4.5 ± 1.54 × 103/µL |
Aged IP | 13.792 ± 2.48 × 103/µL | 5.164 ± 1.0 × 103/µL |
Comparison | Neutrophil (p-value) | H3cit+ Neutrophil (p-value) |
Young vs. Aged | ns | ns |
Young vs. Young IP | ns | ns |
Young vs. Aged IP | ns | ns |
Aged vs. Young IP | ns | ns |
Aged vs. Aged IP | ns | ns |
Young IP vs. Aged IP | ns | ns |
Group (Peritoneal/2 mL) | Neutrophil (Mean ± SD) | H3cit+ Neutrophil (Mean ± SD) | pHrodo+ Neutrophil (Mean ± SD) |
---|---|---|---|
Young | 0.2 ± 0.075 × 103/µL | 0.013 ± 0.004 × 103/µL | 0.0015 ± 0.0005 × 103/µL |
Aged | 0.173 ± 0.06 × 103/µL | 0.006 ± 0.004 × 103/µL | 0.0015 ± 0.0020 × 103/µL |
Young IP | 0.734 ± 0.26 × 103/µL | 0.064 ± 0.059 × 103/µL | 0.0385 ± 0.0170 × 103/µL |
Aged IP | 0.972 ± 0.27 × 103/µL | 0.115 ± 0.019 × 103/µL | 0.1405 ± 0.0375 × 103/µL |
Comparison | Neutrophil (p-value) | H3cit+ Neutrophil (p-value) | pHrodo+ Neutrophil (p-value) |
Young vs. Aged | ns | ns | ns |
Young vs. Young IP | 0.03 * | ns | ns |
Young vs. Aged IP | 0.005 ** | 0.015 * | 0.0002 *** |
Aged vs. Young IP | 0.029 * | ns | ns |
Aged vs. Aged IP | 0.004 ** | 0.011 * | 0.0002 *** |
Young IP vs. Aged IP | ns | ns | 0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magne, A.; Sun, C.; Zargaran, S.; Chadwick, J.W.; Barbour, A.; Glogauer, M. Hyperfunctional Neutrophils in Aged Mice Are Linked to Enhanced Bone Loss in Ligature-Induced Periodontitis. Dent. J. 2025, 13, 244. https://doi.org/10.3390/dj13060244
Magne A, Sun C, Zargaran S, Chadwick JW, Barbour A, Glogauer M. Hyperfunctional Neutrophils in Aged Mice Are Linked to Enhanced Bone Loss in Ligature-Induced Periodontitis. Dentistry Journal. 2025; 13(6):244. https://doi.org/10.3390/dj13060244
Chicago/Turabian StyleMagne, Antoine, Chunxiang Sun, Sina Zargaran, Jeffrey W. Chadwick, Abdelahhad Barbour, and Michael Glogauer. 2025. "Hyperfunctional Neutrophils in Aged Mice Are Linked to Enhanced Bone Loss in Ligature-Induced Periodontitis" Dentistry Journal 13, no. 6: 244. https://doi.org/10.3390/dj13060244
APA StyleMagne, A., Sun, C., Zargaran, S., Chadwick, J. W., Barbour, A., & Glogauer, M. (2025). Hyperfunctional Neutrophils in Aged Mice Are Linked to Enhanced Bone Loss in Ligature-Induced Periodontitis. Dentistry Journal, 13(6), 244. https://doi.org/10.3390/dj13060244