Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosvall, M.D.; Fields, H.W.; Ziuchkovski, J.; Rosenstiel, S.F.; Johnston, W.M. Attractiveness, acceptability, and value of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 276.e1–276.e12. [Google Scholar] [CrossRef]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Efficacy of clear aligners in controlling orthodontic tooth movement: A systematic review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Favero, R.; Libralato, L.; Balestro, F.; Volpato, A.; Favero, L. Edge level of aligners and periodontal health: A clinical perspective study in young patients. Dental Press. J. Orthod. 2023, 28, e2321124. [Google Scholar] [CrossRef] [PubMed]
- Ronsivalle, V.; Gastaldi, G.; Fiorillo, G.; Amato, A.; Loreto, C.; Leonardi, R.; Lo Giudice, A. Customized Facial Orthopedics: Proof of Concept for Generating 3D-Printed Extra-Oral Appliance for Early Intervention in Class III Malocclusion. Prosthesis 2024, 6, 135–145. [Google Scholar] [CrossRef]
- Favero, R.; Volpato, A.; Favero, L. Managing early orthodontic treatment with clear aligners. J. Clin. Orthod. 2018, 52, 701–709. [Google Scholar] [PubMed]
- Jedliński, M.; Mazur, M.; Greco, M.; Belfus, J.; Grocholewicz, K.; Janiszewska-Olszowska, J. Attachments for the Orthodontic Aligner Treatment—State of the Art—A Comprehensive Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 4481. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wang, C.; Li, L.; He, Y.; Wang, C.; Song, J.; Wang, L.; Fan, Y. The effects of lingual buttons, precision cuts, and patient-specific attachments during maxillary molar distalization with clear aligners: Comparison of finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2023, 163, e1–e12. [Google Scholar] [CrossRef]
- Skaik, A.; Wei, X.L.; Abusamak, I.; Iddi, I. Effects of time and clear aligner removal frequency on the force delivered by different polyethylene terephthalate glycol-modified materials determined with thin-film pressure sensors. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 98–107. [Google Scholar] [CrossRef]
- ISO 604:2002; Plastics—Determination of Compressive Properties. International Organization for Standardization (ISO): Geneva, Switzerland, 2002.
- Bresolato, D.; Volpato, A.; Favero, L.; Favero, R. Effect of Water-Based Disinfectants or Air-Drying on Dimensional Changes in a Thermoplastic Orthodontic Aligner. Materials 2021, 14, 7850. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V.M.; Martinez-Gomez, L. Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution. Bioinorg. Chem. Appl. 2015, 1, 930802. [Google Scholar] [CrossRef] [PubMed]
- Duffó, G.S.; Castillo, E.Q. Development of an Artificial Saliva Solution for Studying the Corrosion Behavior of Dental Alloys. Corrosion 2004, 60, 594–602. [Google Scholar] [CrossRef]
- Afraz, W.; Sunilkumar, P.; Chaudhari, A.; Patil, C.; Yaragamblimath, P.; Survase, R. Leaching from thermoplastic sheets-a quantitative assessment. Int. J. Contemp. Med. Res. 2016, 3, 1518–1521. [Google Scholar]
- Keskus, B.; Oznurhan, F. Comparison of physical and mechanical properties of three different restorative materials in primary teeth: An in vitro study. Eur. Arch. Paediatr. Dent. 2022, 23, 821–828. [Google Scholar] [CrossRef]
- Maiorov, E.E.; Shalamai, L.I.; Mendosa, E.Y.; Lampusova, V.B.; Oksas, N.S. Determination of the Mechanical Properties of Contemporary Dental Composite Materials by a Stretching Method. Biomed. Eng. 2022, 56, 242–246. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Arya, R.K.; Thapliyal, D.; Sharma, J.; Verros, G.D. Glassy Polymers—Diffusion, Sorption, Ageing and Applications. Coatings 2021, 11, 1049. [Google Scholar] [CrossRef]
- Biradar, B.; Biradar, S.; Ms, A. Evaluation of the Effect of Water on Three Different Light Cured Composite Restorative Materials Stored in Water: An In Vitro Study. Int. J. Dent. 2012, 1, 640942. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.T.; He, J.W.; Lin, Z.M.; Liu, F.; Lassila, L.V.; Vallittu, P.K. Physical and chemical properties of an antimicrobial Bis-GMA free dental resin with quaternary ammonium dimethacrylate monomer. J. Mech. Behav. Biomed. Mater. 2016, 56, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Soderholm, K.-J.M.; Roberts, M.J. Influence of Water Exposure on the Tensile Strength of Composites. J. Dent. Res. 1990, 69, 1812–1816. [Google Scholar] [CrossRef]
- Monterubbianesi, R.; Tosco, V.; Sabbatini, S.; Orilisi, G.; Conti, C.; Özcan, M.; Orsini, G.; Putignano, A. How Can Different Polishing Timing Influence Methacrylate and Dimethacrylate Bulk Fill Composites? Evaluation of Chemical and Physical Properties. Biomed. Res. Int. 2020, 1, 1965818. [Google Scholar] [CrossRef]
- Sarrett, D.C.; Söderholm, K.-J.M.; Batich, C.D. Water and Abrasive Effects on Three-body Wear of Composites. J. Dent. Res. 1991, 70, 1074–1081. [Google Scholar] [CrossRef]
- Prakki, A.; Cilli, R.; Mondelli RF, L.; Kalachandra, S.; Pereira, J.C. Influence of pH environment on polymer based dental material properties. J. Dent. 2005, 33, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Dhanpal, P.; Yiu CK, Y.; King, N.M.; Tay, F.R.; Hiraishi, N. Effect of temperature on water sorption and solubility of dental adhesive resins. J. Dent. 2009, 37, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Isshen, B.A.; Willmann, J.H.; Nimer, A.; Drescher, D. Effect of in vitro aging by water immersion and thermocycling on the mechanical properties of PETG aligner material. J. Orofac. Orthop. 2019, 80, 292. [Google Scholar]
- Al-Zain, A.O.; Platt, J.A. Effect of light-curing distance and curing time on composite microflexural strength. Dent. Mater. J. 2021, 40, 202–208. [Google Scholar] [CrossRef]
- Lovadino, J.R.; Ambrosano GM, B.; Aguiar FH, B.; Braceiro, A.; Lima DA, N.L. Effect of Light Curing Modes and Light Curing Time on the Microhardness of a Hybrid Composite Resin. J. Contemp. Dent. Pract. 2007, 8, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Fok AS, L.; Watts, D.C. Multiple correlations of material parameters of light-cured dental composites. Dent. Mater. 2009, 25, 829–836. [Google Scholar] [CrossRef]
- Selig, D.; Haenel, T.; Hausnerová, B.; Moeginger, B.; Labrie, D.; Sullivan, B.; Price, R.B. Examining exposure reciprocity in a resin based composite using high irradiance levels and real-time degree of conversion values. Dent. Mater. 2015, 31, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Randolph, L.D.; Palin, W.M.; Watts, D.C.; Genet, M.; Devaux, J.; Leloup, G.; Leprince, J.G. The effect of ultra-fast photopolymerisation of experimental composites on shrinkage stress, network formation and pulpal temperature rise. Dent. Mater. 2014, 30, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Francesco, P.; Gabriele, C.; Fiorillo, L.; Giuseppe, M.; Antonella, S.; Giancarlo, B.; Mirta, P.; Mendes Tribst, J.P.; Lo Giudice, R. The Use of Bulk Fill Resin-Based Composite in the Sealing of Cavity with Margins in Radicular Cementum. Eur. J. Dent. 2022, 16, 1–13. [Google Scholar] [CrossRef]
- Tamburrino, F.; D’Antò, V.; Bucci, R.; Alessandri-Bonetti, G.; Barone, S.; Razionale, A.V. Mechanical Properties of Thermoplastic Polymers for Aligner Manufacturing: In Vitro Study. Dent. J. 2020, 8, 47. [Google Scholar] [CrossRef] [PubMed]
Component | Content (g/L) |
---|---|
NaCl | 0.6 |
KCl | 0.72 |
CaCl2·2H2O | 0.22 |
KH2PO4 | 0.68 |
Na2HPO4·12H2O | 0.856 |
KSCN | 0.06 |
NaHCO3 | 1.5 |
C₆H₈O₇ | 0.03 |
Group | Mean (MPa) | Standard Deviation (MPa) | Minimum (MPa) | Maximum (MPa) | Range (MPa) |
---|---|---|---|---|---|
10 s NB | 1673.6 | 210.1 | 1340.6 | 1996.0 | 655.4 |
5 s NB | 1665.9 | 154.6 | 1331.4 | 1847.1 | 515.7 |
10 s B | 1638.1 | 203.2 | 1324.3 | 1897.1 | 572.8 |
5 s B | 1454.5 | 137.7 | 1210.4 | 1676.7 | 466.3 |
Factors | Count | Mean (MPa) | Standard Error (MPa) | Lower Limit (MPa) | Upper Limit (MPa) |
---|---|---|---|---|---|
Bath | |||||
NO | 24 | 1669.7 | 36.6 | 1596.1 | 1743.4 |
YES | 24 | 1546.3 | 36.6 | 1472.6 | 1620.0 |
Time | |||||
5 s | 24 | 1560.2 | 36.6 | 1486.5 | 1633.9 |
10 s | 24 | 1655.9 | 36.6 | 1582.2 | 1729.5 |
bath × time | |||||
NO—5 s | 12 | 1665.9 | 51.7 | 1561.7 | 1770.1 |
NO—10 s | 12 | 1673.6 | 51.7 | 1569.4 | 1777.8 |
YES—5 s | 12 | 1454.5 | 51.7 | 1350.3 | 1558.7 |
YES—10 s | 12 | 1638.1 | 51.7 | 1533.9 | 1742.3 |
OVERALL MEAN | 48 | 1608.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favero, R.; Zanetti, T.; Tosco, V.; Monterubbianesi, R.; Volpato, A. Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study. Dent. J. 2025, 13, 67. https://doi.org/10.3390/dj13020067
Favero R, Zanetti T, Tosco V, Monterubbianesi R, Volpato A. Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study. Dentistry Journal. 2025; 13(2):67. https://doi.org/10.3390/dj13020067
Chicago/Turabian StyleFavero, Riccardo, Tommaso Zanetti, Vincenzo Tosco, Riccardo Monterubbianesi, and Andrea Volpato. 2025. "Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study" Dentistry Journal 13, no. 2: 67. https://doi.org/10.3390/dj13020067
APA StyleFavero, R., Zanetti, T., Tosco, V., Monterubbianesi, R., & Volpato, A. (2025). Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study. Dentistry Journal, 13(2), 67. https://doi.org/10.3390/dj13020067