Transforming Dental Care, Practice and Education with Additive Manufacturing and 3D Printing: Innovations in Materials, Technologies, and Future Pathways
Abstract
1. Introduction
2. Additive Manufacturing Techniques in Dentistry
2.1. Overview of 3D Printing Technologies
2.2. Comparative Analysis of Techniques
3. Materials Used in Dental 3D Printing
3.1. Polymers
3.2. Metals
3.3. Ceramics and Composites
3.4. Biocompatibility and Testing Challenges
- Cytotoxicity: Residual monomers from incomplete polymerization can lead to cytotoxic effects, especially in resins [21].
- Post-Processing Requirements: Proper curing, cleaning, and sterilization are essential to minimize toxicity and ensure mechanical integrity [15].
- Regulatory Compliance: Materials must meet stringent standards for safety and efficacy, which can vary by region and application [22].
4. Applications in Dental Practice
4.1. Prosthodontics
4.2. Orthodontics
4.3. Pediatric Dentistry
4.4. Endodontics
4.5. Implantology
4.6. Maxillofacial and Oral Surgery
4.7. Dental Education and Simulation Training
4.8. Supplies for the Dental Clinics and Their Architectural Layout
5. Innovations and Emerging Trends
5.1. 4D Printing and Smart Materials
5.2. Computational Modeling
5.3. AI and Digital Workflow Integration
5.4. Leadership Strategies for Productivity with 3D Printing
- Enabling technology strategy, which focuses on integrating digital workflows and training staff.
- Innovative business model strategy, which includes in-house production to reduce outsourcing and turnaround times.
- The customer demand strategy focuses on enhancing the patient’s experience by reducing chair time and minimizing the number of visits.
5.5. Additive Manufacturing and 3D Printing in Dental Practice as a Driver of Environmental Sustainability and Circular Economy
- Recycled materials and eco-friendly practices: Studies have shown that recycled nylon and other polymers can be effectively reused in dental applications without compromising quality [11]. Additive manufacturing reduces material waste compared to subtractive methods and supports on-demand production, minimizing inventory and transportation emissions [109].
- Circular economy models and cost reduction: Hospitals and clinics are exploring closed-loop systems that convert waste plastics into usable filaments for printing anatomical models and devices. 3D printing also promises to reduce healthcare costs by enabling on-demand production, minimizing material waste, and streamlining supply chains, contributing to more sustainable and cost-effective dental care [110].
- Use of sustainable and biocompatible materials: New dental 3D printing materials are being developed, including biocompatible, recyclable, and bio-based polymers like polylactic acid (PLA) composites made from renewable biomass. Compared to petroleum-derived resins, these options are more environmentally friendly and align with circular economy principles when used in closed-loop recycling systems [111,112,113].
- Energy efficiency and process optimization: Although additive manufacturing (AM) consumes electricity during printing and post-curing, innovations such as stereolithography apparatus (SLA) allow the creation of complex structures with high precision. SLA also offers benefits like high efficiency and energy savings, helping to cut energy use without sacrificing quality [114,115]. Original research by Caelli and colleagues showed that using direct printing through Additive Manufacturing (AM) offers environmental benefits, mainly due to decreased raw material use and lower electricity consumption [116]. When combined with renewable energy sources, these technologies can further reduce the carbon footprint of dental manufacturing.
- Environmental assessment for continuous improvement in dental practice: Using life cycle analysis (LCA) methods, dental practices can measure the environmental impact of various manufacturing approaches. This evidence-based strategy supports ongoing workflow improvements aimed at achieving sustainability goals while upholding high clinical quality. A 2024 study using the LCA method found that dental practices have increased their overall carbon footprint (CFP) from 27 to 35 tons, primarily due to higher staff travel and waste generation. The incineration of mixed dental waste contributes around fifteen hundred kg of carbon emissions per ton, underscoring the significant environmental impact of waste management and the need for more sustainable disposal methods. They recommended addressing waste and promoting low-carbon transport within the dental practice, which is vital [117]. According to a recent study from Egypt, private dental laboratories contribute significantly to carbon emissions, mainly from staff travel. This results from the reliance on several couriers in each laboratory to deliver impressions, prostheses, and appliances [118]. With on-site 3D printing and AM, dental clinics can manufacture crowns, aligners, and occlusal splints internally, lessening reliance on centralized labs for delivery. This shift toward localized production helps lower packaging waste and transport-related emissions, promoting greener dental supply chains. Utilizing life cycle analysis (LCA) methods should be routinely checked for dental practices to monitor their carbon footprint emissions.
6. Challenges and Limitations
- Biocompatibility and Mechanical Properties: Not all printable materials meet the stringent requirements for long-term use in the oral cavity. Some resins may release residual monomers, posing cytotoxic risks [21].
- Limited Material Diversity: Although polymers, metals, and ceramics are utilized, the range of materials suitable for specific dental applications remains narrow, particularly for permanent restorations [8].
- Post-Processing Needs: Many materials require extensive post-curing, cleaning, and finishing to achieve desired properties, increasing complexity and time [15]. Surface optimization in fused filament fabrication has been shown to significantly impact the quality of dental implants, with parameters like layer thickness and build orientation playing a crucial role in achieving smoother finishes and better clinical outcomes [120].
- High Initial Investment: Equipment, software, and materials can be expensive, especially for small or rural clinics [3].
- Maintenance and Upgrades: Regular calibration, updates, and repairs add to operational costs.
- Economic Disparities: Access to advanced 3D printing technologies is uneven across regions and institutions, limiting equitable adoption [47].
- Lack of Unified Standards: Variability in material quality, printer performance, and post-processing protocols complicates regulatory approval [86].
- Regulatory Complexity: Navigating FDA or CE mark requirements for custom medical devices can be time-consuming and costly [22].
- Quality Assurance: Ensuring consistent output across different printers and batches remains a significant challenge.
- Skill Gaps: Effective use of 3D printing requires knowledge of CAD/CAM, material science, and digital workflows, which many practitioners lack [121].
- Resistance to Change: Some clinicians hesitate to adopt new technologies due to perceived complexity or disruption to established workflows.
- Educational Integration: The limited inclusion of 3D printing in dental curricula hinders the development of a digitally fluent workforce [122].
7. Future Directions
7.1. Personalized and Regenerative Dentistry
7.2. Bioprinting of Dental Tissues
7.3. Integration with Virtual and Augmented Reality
7.4. Clinical Validation and Long-Term Studies
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AM | Additive Manufacturing |
| 3D | Three-Dimensional |
| 4D | Four-Dimensional |
| UV | Ultraviolet |
| SLA | Stereolithography |
| FDM | Fused Deposition Modeling |
| SLS | Selective Laser Sintering |
| DLP | Digital Light Processing |
| CAD | Computer-Aided Design |
| CAM | Computer-Aided Manufacturing |
| PEEK | Polyether Ether Ketone |
| PLA | Polylactic Acid |
| PMMA | Polymethyl Methacrylate |
| AI | Artificial Intelligence |
| VR | Virtual Reality |
| AR | Augmented Reality |
| CBCT | Cone Beam Computed Tomography |
| FEA | Finite Element Analysis |
| ML | Machine Learning |
| RTIL | Room Temperature Ionic Liquid |
| PPE | Personal Protective Equipment |
| hOBs | Human Oral Osteoblasts |
| OD | Optical Density |
| SMPs | Shape-memory Polymers |
| pH | Potential of Hydrogen |
| PGFA | Gutta-percha-filled area |
References
- Olivo, E.A.C.O. 3D Printing in Dental Science. Rev. Estomatol. 2022, 30, e11947. [Google Scholar] [CrossRef]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, J. Application of 3D Printing Technology in Dentistry: A Review. Polymers 2025, 17, 886. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.A.I.; Sheikh, N.A. 3D printing review in numerous applications for dentistry. J. Inst. Eng. Ser. C 2022, 103, 991–1000. [Google Scholar] [CrossRef]
- Rezaie, F.; Farshbaf, M.; Dahri, M.; Masjedi, M.; Maleki, R.; Amini, F.; Wirth, J.; Moharamzadeh, K.; Weber, F.E.; Tayebi, L. 3D printing of dental prostheses: Current and emerging applications. J. Compos. Sci. 2023, 7, 80. [Google Scholar] [CrossRef]
- Jeong, M.; Radomski, K.; Lopez, D.; Liu, J.T.; Lee, J.D.; Lee, S.J. Materials and applications of 3D printing technology in dentistry: An overview. Dent. J. 2023, 12, 1. [Google Scholar] [CrossRef]
- Lin, L.; Fang, Y.; Liao, Y.; Chen, G.; Gao, C.; Zhu, P. 3D printing and digital processing techniques in dentistry: A review of literature. Adv. Eng. Mater. 2019, 21, 1801013. [Google Scholar] [CrossRef]
- Cai, H.; Xu, X.; Lu, X.; Zhao, M.; Jia, Q.; Jiang, H.-B.; Kwon, J.-S. Dental materials applied to 3D and 4D printing technologies: A review. Polymers 2023, 15, 2405. [Google Scholar] [CrossRef]
- Gao, J.; Pan, Y.; Gao, Y.; Pang, H.; Sun, H.; Cheng, L.; Liu, J. Research progress on the preparation process and material structure of 3D-printed dental implants and their clinical applications. Coatings 2024, 14, 781. [Google Scholar] [CrossRef]
- Surmen, H.K.; Ortes, F.; Arslan, Y.Z. Fundamentals of 3D printing and its applications in biomedical engineering. In 3D Printing in Biomedical Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 23–41. [Google Scholar]
- Al-Kaabi, A.F. Surface evaluation of recycled nylon for FDM 3D printing for the purpose of dental prosthesis construction. Adv. Mater. Res. 2025, 14, 61. [Google Scholar]
- Juneja, M.; Bajaj, D.; Thakur, N.; Jindal, P. Reproduction of human dental models using different 3D printing techniques. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 239, 09544089241239591. [Google Scholar] [CrossRef]
- Shaikh, S.; Nahar, P.; Ali, H.M. Current perspectives of 3d printing in dental applications. Braz. Dent. Sci. 2021, 24, 1–9. [Google Scholar] [CrossRef]
- Ciocan, L.T.; Vasilescu, V.G.; Pantea, M.; Pițuru, S.M.; Imre, M.; Ripszky Totan, A.; Froimovici, F.O. The Evaluation of the trueness of dental mastercasts obtained through different 3D printing technologies. J. Funct. Biomater. 2024, 15, 210. [Google Scholar] [CrossRef]
- Bhatt, S.; Simre, S.S.; Patadiya, H.H.; Yadav, D.; Deepti, B.; Sathvi, S.S.; Manamasa, Y. 3D printing in dentistry: A review. J. Adv. Med. Dent. Sci. Res. 2025, 13, 11–15. [Google Scholar]
- Beuer, F.; Steff, B.; Naumann, M.; Sorensen, J.A. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur. J. Oral Sci. 2008, 116, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Huang, S.; Liu, Y.; Li, D. Molding Quality and Biological Evaluation of a Two-Stage Titanium Alloy Dental Implant Based on Combined 3D Printing and Subtracting Manufacturing. ACS Omega 2024, 9, 51591–51603. [Google Scholar] [CrossRef]
- Anadioti, E.; Kane, B.; Soulas, E. Current and emerging applications of 3D printing in restorative dentistry. Curr. Oral Health Rep. 2018, 5, 133–139. [Google Scholar] [CrossRef]
- Nizam, M.; Purohit, R.; Taufik, M. Materials for 3D printing in healthcare sector: A review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2024, 238, 939–963. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Shah, R.; Dalwadi, H. Application of Polymer and Biomaterials for 3d Printing Technology. Int. J. Appl. Eng. Res. 2022, 10, 2244–2250. [Google Scholar] [CrossRef]
- Rus, F.; Neculau, C.; Imre, M.; Duica, F.; Popa, A.; Moisa, R.M.; Voicu-Balasea, B.; Radulescu, R.; Ripszky, A.; Ene, R. Polymeric Materials Used in 3DP in Dentistry—Biocompatibility Testing Challenges. Polymers 2024, 16, 3550. [Google Scholar] [CrossRef]
- Elango, V.; Murugappan, M.; Vetrivel, K.; Yusuf, M.; Nikam, K. 3D Printing in the pharmaceutical industry: A special consideration on medical device and its applications. Int. J. Appl. Pharm. 2025, 17, 1–11. [Google Scholar] [CrossRef]
- Alghauli, M.A.; Aljohani, R.; Aljohani, W.; Almutairi, S.; Alqutaibi, A.Y. Evolution of Medical 3D Printing, Printable Biomaterials, Prosthetic and Regenerative Dental Applications. Bioprinting 2025, 46, e00395. [Google Scholar] [CrossRef]
- Diznab, F.A.; Oskouei, H.G.; Dehghan, F.; Dehghan, M.; Golrokhian, M.; Rafighi, A.; Shenasa, N. The Role of 3D Printing in Customizing Dental Prosthetics and Orthodontic Appliances. Galen Med. J. 2024, 13, e3719. [Google Scholar] [CrossRef]
- Sheoran, A.J.; Kumar, H.; Arora, P.K.; Moona, G. Bio-medical applications of additive manufacturing: A review. Procedia Manuf. 2020, 51, 663–670. [Google Scholar] [CrossRef]
- Groth, C.; Kravitz, N.D.; Jones, P.E.; Graham, J.W.; Redmond, W.R. Three-dimensional printing technology. J. Clin. Orthod. 2014, 48, 475–485. [Google Scholar]
- Ergül, T.; Güleç, A.; Göymen, M. The use of 3D printers in orthodontics-a narrative review. Turk. J. Orthod. 2023, 36, 134. [Google Scholar] [CrossRef]
- Dietrich, C.A.; Ender, A.; Baumgartner, S.; Mehl, A. A validation study of reconstructed rapid prototyping models produced by two technologies. Angle Orthod. 2017, 87, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Koretsi, V.; Kirschbauer, C.; Proff, P.; Kirschneck, C. Reliability and intra-examiner agreement of orthodontic model analysis with a digital caliper on plaster and printed dental models. Clin. Oral Investig. 2019, 23, 3387–3396. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.B.; Currier, G.F.; Kadioglu, O.; Kierl, J.P. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Hazeveld, A.; Slater, J.J.H.; Ren, Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 108–115. [Google Scholar] [CrossRef]
- Ledingham, A.D.; English, J.D.; Akyalcin, S.; Cozad, B.E.; Ontiveros, J.C.; Kasper, F.K. Accuracy and mechanical properties of orthodontic models printed 3-dimensionally from calcium sulfate before and after various postprinting treatments. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Fekonja, A.; Rošer, N.; Drstvenšek, I. Additive manufacturing in orthodontics. Mater. Tehnol. 2019, 53, 165–169. [Google Scholar]
- Tsolakis, I.A.; Gizani, S.; Panayi, N.; Antonopoulos, G.; Tsolakis, A.I. Three-dimensional printing technology in orthodontics for dental models: A systematic review. Children 2022, 9, 1106. [Google Scholar] [CrossRef]
- Aktaş, N.; Ciftci, V. Current applications of three-dimensional (3D) printing in pediatric dentistry: A literature review. J. Clin. Pediatr. Dent. 2024, 48, 4–13. [Google Scholar] [CrossRef]
- Davidovich, E.; Dagon, S.; Tamari, I.; Etinger, M.; Mijiritsky, E. An innovative treatment approach using digital workflow and CAD-CAM part 2: The restoration of molar incisor hypomineralization in children. Int. J. Environ. Res. Public Health 2020, 17, 1499. [Google Scholar]
- Xepapadeas, A.B.; Weise, C.; Frank, K.; Spintzyk, S.; Poets, C.; Wiechers, C.; Arand, J.; Koos, B. Technical note on introducing a digital workflow for newborns with craniofacial anomalies based on intraoral scans-part I: 3D printed and milled palatal stimulation plate for trisomy 21. BMC Oral Health 2020, 20, 20. [Google Scholar]
- Mamo, H.B.; Adamiak, M.; Kunwar, A. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. J. Mech. Behav. Biomed. Mater. 2023, 143, 105930. [Google Scholar]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D printing of polymers: Fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, T.; Kjellberg, H. Effect of treatment with dental space maintainers after the early extraction of the second primary molar: A systematic review. Eur. J. Orthod. 2023, 45, 462–467. [Google Scholar] [CrossRef]
- Yelkenci, A.; Güven Polat, G.; Oncu, E.; Ciftci, F. AI-Powered Prediction of Dental Space Maintainer Needs Using X-Ray Imaging: A CNN-Based Approach for Pediatric Dentistry. Appl. Sci. 2025, 15, 3920. [Google Scholar] [CrossRef]
- Rodrigues, L.P.; Dourado, P.H.N.; de Araújo, C.A.R.; No-Cortes, J.; Pinhata-Baptista, O.H. Digital workflow to produce esthetic space maintainers for growing patients. J. Prosthet. Dent. 2024, 131, 800–803. [Google Scholar] [CrossRef]
- Tamburrino, F.; Chiocca, A.; Aruanno, B.; Paoli, A.; Lardani, L.; Carli, E.; Derchi, G.; Giuca, M.R.; Razionale, A.V.; Barone, S. A novel digitized method for the design and additive manufacturing of orthodontic space maintainers. Appl. Sci. 2023, 13, 8320. [Google Scholar] [CrossRef]
- Kasihani, N.N.; Rikawarastuti, R. Study of 3D printing model in dental health education preclinic practices: Narrative review. JDHT J. Dent. Hyg. Ther. 2023, 4, 88–96. [Google Scholar] [CrossRef]
- Bürklein, S.; Schäfer, E.; Donnermeyer, D. Evaluation of a 3D-Printed Model as Complete Case Scenario in Undergraduate Dental Education—Diagnosis, Treatment Planning and Clinical Practice. Eur. J. Dent. Educ. 2025, 29, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Karagkounaki, A.; Manoukakis, T.; Margariti, I.; Pavlou, C.; Hadjichristou, C. 3D printing in dental education: A review of its use across disciplines. J. Dent. Educ. 2025, 89, 1479–1486. [Google Scholar] [PubMed]
- Sag, O.M.; Li, X.; Åman, B.; Thor, A.; Brantnell, A. Qualitative exploration of 3D printing in Swedish healthcare: Perceived effects and barriers. BMC Health Serv. Res. 2024, 24, 1455. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.; Dissanayaka, W.L.; Wang, M. Gelatin Methacryloyl/Sodium Alginate/Cellulose Nanocrystal Inks and 3D Printing for Dental Tissue Engineering Applications. ACS Omega 2024, 9, 48361–48373. [Google Scholar] [CrossRef] [PubMed]
- Saleh, Y.; Piper, R.; Richard, M.; Jeyaretna, S.; Cosker, T. Designing a 3D printed model of the skull-base: A collaboration between clinicians and industry. J. Med. Educ. Curric. Dev. 2022, 9, 23821205221080703. [Google Scholar] [CrossRef]
- Narain, S. The Role of 3D Imaging in Endodontic Diagnosis and Treatment Planning: A Systematic Review. J. Dent. Care 2024, 1, 22–31. [Google Scholar]
- Huth, K.C.; Borkowski, L.; Liebermann, A.; Berlinghoff, F.; Hickel, R.; Schwendicke, F.; Reymus, M. Comparing accuracy in guided endodontics: Dynamic real-time navigation, static guides, and manual approaches for access cavity preparation–an in vitro study using 3D printed teeth. Clin. Oral Investig. 2024, 28, 212. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Chen, C.; Wang, J.; Gu, P.; Ma, J.; Wu, D.; Li, J. The accuracy of using guided endodontics in access cavity preparation and the temperature changes of root surface: An in vitro study. BMC Oral Health 2022, 22, 504. [Google Scholar] [CrossRef]
- Cunha, D.; Souza, N.; Moreira, M.; Rodrigues, N.; Silva, P.; Franca, C.; Horsophonphong, S.; Sercia, A.; Subbiah, R.; Tahayeri, A. 3D-printed microgels supplemented with dentin matrix molecules as a novel biomaterial for direct pulp capping. Clin. Oral Investig. 2023, 27, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Pouhaër, M.; Picart, G.; Baya, D.; Michelutti, P.; Dautel, A.; Pérard, M.; Le Clerc, J. Design of 3D-printed macro-models for undergraduates’ preclinical practice of endodontic access cavities. Eur. J. Dent. Educ. 2022, 26, 347–353. [Google Scholar] [CrossRef]
- Ho, Y.-C.; Jiang, W.-R.; Romario, Y.S.; Bhat, C.; Ramezani, M.; Jiang, C.-P. Multi-resin 3D printing of radiopaque customized artificial tooth for revolutionizing preclinical training on root canal treatment. Ann. 3D Print. Med. 2025, 17, 100187. [Google Scholar] [CrossRef]
- Reymus, M.; Fotiadou, C.; Kessler, A.; Heck, K.; Hickel, R.; Diegritz, C. 3D printed replicas for endodontic education. Int. Endod. J. 2019, 52, 123–130. [Google Scholar]
- Vijayavenkataraman, S.; Vialli, N.; Fuh, J.Y.; Lu, W.F. Conductive collagen/polypyrrole-b-polycaprolactone hydrogel for bioprinting of neural tissue constructs. Int. J. Bioprint. 2019, 5, 229. [Google Scholar]
- Patil, S.R.; Karobari, M.I. Exploring Artificial Intelligence for Enhanced Endodontic Practice: Applications, Challenges, and Future Directions. Adv. Public Health 2024, 2024, 8075515. [Google Scholar] [CrossRef]
- Zhou, J.; See, C.W.; Sreenivasamurthy, S.; Zhu, D. Customized additive manufacturing in bone scaffolds—The gateway to precise bone defect treatment. Research 2023, 6, 0239. [Google Scholar] [CrossRef]
- Miljanovic, D. Design and Fabrication of Mandibular Implants using Additive Manufacturing Technologies. Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia, 2024. [Google Scholar]
- Francesco, M.; Di Fiore, A.; Gobbato, E.; Fioretti, A.; Zuccon, A.; Stellini, E. (Eds.) Comparison between sla and dlp printing materials in dentistry: A review. In Atti 27° Congresso Nazionale Collegio dei Docenti Universitari di Discipline Odontostomatologiche; Collegio dei Docenti Universitari di Discipline Odontostomatologiche (CDUO ETS): Rome, Italy, 2020. [Google Scholar]
- Tahmaseb, A.; Wu, V.; Wismeijer, D.; Coucke, W.; Evans, C. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2018, 29, 416–435. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, G.; Zavan, B.; Petrini, M.; Ferroni, L.; Pierfelice, T.V.; D’Amora, U.; Ronca, A.; D’Amico, E.; Mangano, C. 3D printed dental implants with a porous structure: The in vitro response of osteoblasts, fibroblasts, mesenchymal stem cells, and monocytes. J. Dent. 2024, 140, 104778. [Google Scholar] [CrossRef]
- Alghauli, M.A.; Almutairi, S.; Aljohani, R.; Aljohani, W.; Alqutaibi, A.Y. Advanced Subtractive Manufacturing, Micromilling, and Laser Micromachinery in Dentistry: Current Applications, Limitations, and Future Perspectives. Biomater. Connect. 2025, 2, 0013. [Google Scholar] [CrossRef]
- Namvar, A.; Lozanovski, B.; Downing, D.; Williamson, T.; Kastrati, E.; Shidid, D.; Hill, D.; Buehner, U.; Ryan, S.; Choong, P.F. Finite element analysis of patient-specific additive-manufactured implants. Front. Bioeng. Biotechnol. 2024, 12, 1386816. [Google Scholar]
- Alqutaibi, A.Y.; Alghauli, M.A.; Aljohani, M.H.A.; Zafar, M.S. Advanced additive manufacturing in implant dentistry: 3D printing technologies, printable materials, current applications and future requirements. Bioprinting 2024, 42, e00356. [Google Scholar] [CrossRef]
- Rues, S.; Zehender, N.; Zenthöfer, A.; Bömicke, W.; Herpel, C.; Ilani, A.; Erber, R.; Roser, C.; Lux, C.J.; Rammelsberg, P. Fit of anterior restorations made of 3D-printed and milled zirconia: An in-vitro study. J. Dent. 2023, 130, 104415. [Google Scholar] [CrossRef] [PubMed]
- Waghmare, G.; Waghmare, K.G.; Bagde, S.T.; Deshmukh, M.N. (Eds.) Designing Dental Implants: The Use of Finite Element Analysis, a Comprehensive Review. In International Conference on Futuristic Advancements in Materials, Manufacturing and Thermal Sciences; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Farazin, A.; Darghiasi, S.F. Advancements in dental implant design: Addressing current challenges and exploring future opportunities. J. Aust. Ceram. Soc. 2025, 61, 1–15. [Google Scholar] [CrossRef]
- Rajaeirad, M.; Einafshar, M.M.; Karimpour, M.; Jamshidi, N. Patient-specific implant (PSI) design. Adv. Biomed. Compos. Mater. Des. Manuf. 2025, 22, 127. [Google Scholar]
- Jaber, M.A.; Jaber, A.M. Challenges and Opportunities of Digital Dentistry in Remote Environments. Transform. Dent. Health Rural. Communities Digit. Dent. 2025, 233–270. [Google Scholar]
- Hijazi, K.M.; Dixon, S.J.; Armstrong, J.E.; Rizkalla, A.S. Titanium alloy implants with lattice structures for mandibular reconstruction. Materials 2023, 17, 140. [Google Scholar] [CrossRef]
- Rachim, V.P.; Park, S.-M. Review of 3D-printing technologies for wearable and implantable bio-integrated sensors. Essays Biochem. 2021, 65, 491–502. [Google Scholar]
- Deng, Z.; Xiang, N.; Pan, J. State of the art in immersive interactive technologies for surgery simulation: A review and prospective. Bioengineering 2023, 10, 1346. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, W.; Xiong, J.; Xia, Z. AR and MR in Dentistry: Developments, Applications, and Prospects. IEEE Trans. Med. Robot. Bionics 2024, 7, 171–188. [Google Scholar] [CrossRef]
- Castro-Braga, M.; Domingos Dias, W.; Nogueira, R.F.; Abreu, L.G.; Huebner, R.; Serra-Negra, J.M. Advances of 3D printing in oral oncology: Personalized technologies for patients–a narrative review. J. Complex. Health Sci. 2024, 7, 66–75. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bhattacharya, N.; Bhattacharya, K. Role of 3D Printing in Surgery. Indian J. Surg. 2023, 85, 1319–1322. [Google Scholar] [CrossRef]
- Hellman, S.; Frisch, P.; Platzman, A.; Booth, P. 3D Printing in a hospital: Centralized clinical implementation and applications for comprehensive care. Digit. Health 2023, 9, 20552076231221899. [Google Scholar] [CrossRef] [PubMed]
- Scheidt, K.; Kropla, F.; Winkler, D.; Möbius, R.; Vychopen, M.; Wach, J.; Güresir, E.; Grunert, R. 3D-printed skull model for enhancing training in external ventricular drainage within medical education. 3D Print. Med. 2025, 11, 16. [Google Scholar] [CrossRef]
- Isha, S.N.; Ahmad, A.; Kabir, R.; Apu, E.H. Dental clinic architecture prevents COVID-19-like infectious diseases. HERD: Health Environ. Res. Des. J. 2020, 13, 240–241. [Google Scholar] [CrossRef]
- Cohen, J.; van der Meulen Rodgers, Y. Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Prev. Med. 2020, 141, 106263. [Google Scholar] [CrossRef] [PubMed]
- Arafat, S.Y.; Kar, S.K.; Marthoenis, M.; Sharma, P.; Apu, E.H.; Kabir, R. Psychological underpinning of panic buying during pandemic (COVID-19). Psychiatry Res. 2020, 289, 113061. [Google Scholar] [CrossRef] [PubMed]
- Ishack, S.; Lipner, S.R. Use of 3D printing to support COVID-19 medical supply shortages: A review. J. 3D Print. Med. 2021, 5, 83–95. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Nachtane, M.; Goda, I.; Qureshi, Y.; Benyahia, H. 3D printing to support the shortage in personal protective equipment caused by COVID-19 pandemic. Materials 2020, 13, 3339. [Google Scholar] [CrossRef]
- Agarwal, R. The personal protective equipment fabricated via 3D printing technology during COVID-19. Ann. 3D Print. Med. 2022, 5, 100042. [Google Scholar] [CrossRef]
- Kumar Gupta, D.; Ali, M.H.; Ali, A.; Jain, P.; Anwer, M.K.; Iqbal, Z.; Mirza, M.A. 3D printing technology in healthcare: Applications, regulatory understanding, IP repository and clinical trial status. J. Drug Target. 2022, 30, 131–150. [Google Scholar] [CrossRef]
- Alghauli, M.A.; Almutairi, S.; Almuzaini, S.; Aljohani, R.; Aljohani, W.; Alqutaibi, A.Y. Properties and behavior of additively manufactured provisional fixed dental prostheses: A systematic review on 3D printing orientations relative to applied materials and postprocessing. J. Esthet. Restor. Dent. 2025, 37, 1407–1418. [Google Scholar] [CrossRef]
- Scoutaris, N.; Ross, S.; Douroumis, D. Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm. Res. 2016, 33, 1799–1816. [Google Scholar] [CrossRef]
- Ma, W.C.; Goh, G.L.; Priyadarshini, B.M.; Yeong, W.Y. 3D printing and 3D-printed electronics: Applications and future trends in smart drug delivery devices. Int. J. Bioprint. 2023, 9, 725. [Google Scholar] [CrossRef]
- Kotta, S.; Nair, A.; Alsabeelah, N. 3D printing technology in drug delivery: Recent progress and application. Curr. Pharm. Des. 2018, 24, 5039–5048. [Google Scholar]
- Trenfield, S.J.; Awad, A.; Madla, C.M.; Hatton, G.B.; Firth, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv. 2019, 16, 1081–1094. [Google Scholar] [CrossRef]
- Hayashi, T.; Murase, N.; Sato, N.; Fujino, K.; Sugimura, N.; Wada, H.; Kuroda, K.; Shimojima, A. Fluoride ion-encapsulated germoxane cages modified with organosiloxane chains as anionic components of ionic liquids. Organometallics 2022, 41, 1454–1463. [Google Scholar] [CrossRef]
- Hossain, M.I.; Shams, A.B.; Das Gupta, S.; Blanchard, G.J.; Mobasheri, A.; Hoque Apu, E. The potential role of ionic liquid as a multifunctional dental biomaterial. Biomedicines 2023, 11, 3093. [Google Scholar] [CrossRef] [PubMed]
- Jaber, M.A.; Jaber, A.M. Advancing Dental Implantology through Finite Element Analysis: A Mini-Review. JSM Dent. 2025, 12. [Google Scholar]
- Di Francesco, P.; Bechir, A.; Popescu, A.I.; Chivu, M.V.; Dobrescu, A.M.; Comăneanu, R.M.; Târcolea, M. Finite element analysis (FEA) of the stress behavior of some dental materials. J. Med. Life 2025, 18, 29. [Google Scholar] [CrossRef]
- Paul, D.; Arwood, Z.; Mulon, P.-Y.; Penumadu, D.; Truster, T. Phase field modeling for fracture prediction in goat tibia using an open-source quantitative computer tomography based finite element framework. Biomed. Eng. Adv. 2025, 9, 100164. [Google Scholar] [CrossRef]
- Paul, D.; Arwood, Z.; Mulon, P.-Y.; Penumadu, D.; Truster, T. Method for computer tomography voxel-based finite element analysis and validation with digital image correlation system. MethodsX 2024, 13, 102879. [Google Scholar] [CrossRef]
- Akbas, O.; Greuling, A.; Stiesch, M. The effects of different grading approaches in additively manufactured dental implants on peri-implant bone stress: A finite element analysis. J. Mech. Behav. Biomed. Mater. 2024, 154, 106530. [Google Scholar] [CrossRef] [PubMed]
- Vautrin, A.; Aw, J.; Attenborough, E.; Varga, P. Fatigue life of 3D-printed porous titanium dental implants predicted by validated finite element simulations. Front. Bioeng. Biotechnol. 2023, 11, 1240125. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yu, B.; Dai, Y.; Wang, Y.; Hu, M.; Zhong, H.-J.; He, J. Three-Dimensional Printing Resin-Based Dental Provisional Crowns and Bridges: Recent Progress in Properties, Applications, and Perspectives. Materials 2025, 18, 2202. [Google Scholar]
- Carou-Senra, P.; Ong, J.J.; Castro, B.M.; Seoane-Viano, I.; Rodríguez-Pombo, L.; Cabalar, P.; Alvarez-Lorenzo, C.; Basit, A.W.; Pérez, G.; Goyanes, A. Predicting pharmaceutical inkjet printing outcomes using machine learning. Int. J. Pharm. X 2023, 5, 100181. [Google Scholar] [CrossRef]
- Kamali, A.H.; Moradi, M.; Goodarzian, F.; Ghasemi, P. A discrete event simulation method for performance analysis of an additive manufacturing in the dental clinic. Int. J. Adv. Manuf. Technol. 2022, 118, 2949–2979. [Google Scholar] [CrossRef]
- Husnain, A.; Saeed, A.; Ghazanfar, A. Innovations in dental technology: The synergy of 3D printing and artificial intelligence. Res. J. Comput. Sci. 2023. [Google Scholar]
- Peng, B.; Wei, Y.; Qin, Y.; Dai, J.; Li, Y.; Liu, A.; Tian, Y.; Han, L.; Zheng, Y.; Wen, P. Machine learning-enabled constrained multi-objective design of architected materials. Nat. Commun. 2023, 14, 6630. [Google Scholar] [CrossRef]
- Revilla-León, M.; Gómez-Polo, M.; Vyas, S.; Barmak, B.A.; Galluci, G.O.; Att, W.; Krishnamurthy, V.R. Artificial intelligence applications in implant dentistry: A systematic review. J. Prosthet. Dent. 2023, 129, 293–300. [Google Scholar] [CrossRef]
- Kim, Y.; Sobhani, S. Nonlinear light attenuation curing effects in vat photopolymerization. Addit. Manuf. 2025, 109, 104857. [Google Scholar] [CrossRef]
- Oliveira, J.P.; LaLonde, A.; Ma, J. Processing parameters in laser powder bed fusion metal additive manufacturing. Mater. Des. 2020, 193, 108762. [Google Scholar] [CrossRef]
- Zamanian, E. Strategies Dental Center Leaders Use to Improve Productivity Using Onsite 3D Printing. Ph.D. Thesis, Walden University, Minneapolis, MN, USA, 2023. [Google Scholar]
- Mansour, N.K.; Callera, A.; Potere, F.; Micalizzi, S.; Costantino, M.L.; De Gaetano, F.; Oliva, P. Circular economy and 3D printing in the healthcare sector. Front. Bioeng. Biotechnol. 2025, 13, 1548550. [Google Scholar] [CrossRef]
- Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Kondiah, P.P.; Pillay, V. 3D-printing and the effect on medical costs: A new era? Expert Rev. Pharmacoecon. Outcomes Res. 2016, 16, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Misra, M.; Mohanty, A.K. Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: Recent developments, challenges, and opportunities. ACS Eng. Au 2021, 1, 7–38. [Google Scholar] [CrossRef]
- Mou, L.; Li, J.; Lu, Y.; Li, G.; Li, J. Polylactic acid: A future universal biobased polymer with multifunctional performance—From monomer synthesis, and processing to applications: A review. J. Hazard. Mater. Adv. 2025, 18, 100757. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Gupta, M.; Singh, H. PLA based biocomposites for sustainable products: A review. Adv. Ind. Eng. Polym. Res. 2023, 6, 382–395. [Google Scholar] [CrossRef]
- Wang, E.; Yang, F.; Shen, X.; Li, Z.; Yang, X.; Zhang, X.; Peng, W. Investigation and optimization of the impact of printing orientation on mechanical properties of resin sample in the low-force stereolithography additive manufacturing. Materials 2022, 15, 6743. [Google Scholar] [CrossRef]
- Fidan, I.; Naikwadi, V.; Alkunte, S.; Mishra, R.; Tantawi, K. Energy efficiency in additive manufacturing: Condensed review. Technologies 2024, 12, 21. [Google Scholar] [CrossRef]
- Caelli, C.; Tamburrino, F.; Brondi, C.; Razionale, A.V.; Ballarino, A.; Barone, S. Sustainability in healthcare sector: The dental aligners case. Sustainability 2023, 15, 16757. [Google Scholar] [CrossRef]
- Duane, B.; Steinbach, I.; Mackenzie, L. A carbon calculator: The development of a user-friendly greenhouse gas measuring tool for general dental practice (Part 2). Br. Dent. J. 2024, 236, 57–61. [Google Scholar] [CrossRef]
- Elwan, A.H.; Fouda, A.M. Carbon footprint of private dental laboratories in Egypt: A cross-sectional study. BDJ Open 2025, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, T.; Kreuter, P.; Kismarczi-Antalffy, A.A.; Demeter, T.; Banyai, D.; Vegh, A.; Geczi, Z.; Hermann, P.; Payer, M.; Zsembery, A. User experience and sustainability of 3D printing in dentistry. Int. J. Environ. Res. Public Health 2022, 19, 1921. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Zaoutsos, S.P. Optimising fused filament fabrication surface roughness for a dental implant. Mater. Manuf. Process. 2023, 38, 954–959. [Google Scholar] [CrossRef]
- Acharya, A.; Chodankar, R.N.; Patil, R.; Patil, A.G. Assessment of knowledge, awareness, and practices toward the use of 3D printing in dentistry among dental practitioners and dental technicians: A cross-sectional study. J. Oral Biol. Craniofacial Res. 2023, 13, 253–258. [Google Scholar] [CrossRef]
- Benfaida, S.; Boualam, A.; Lefdali, N.; Bennani, A. Development of a Teaching Tool in Dental Practical Training Using 3D Dental Printing. Eur. J. Dent. Oral Health 2025, 6, 29–33. [Google Scholar] [CrossRef]
- Liaw, C.-Y.; Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication 2017, 9, 024102. [Google Scholar] [CrossRef]
- Nagarajan, N.; Dupret-Bories, A.; Karabulut, E.; Zorlutuna, P.; Vrana, N.E. Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnol. Adv. 2018, 36, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Li, Y.; Wang, X.; Zhu, T.; Wang, Q.; Cai, H.; Li, W.; Tian, Y.; Liu, Z. Progressive 3D printing technology and its application in medical materials. Front. Pharmacol. 2020, 11, 122. [Google Scholar] [CrossRef]
- Jakus, A.E.; Rutz, A.L.; Shah, R.N. Advancing the field of 3D biomaterial printing. Biomed. Mater. 2016, 11, 014102. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. 3D printing applications for healthcare research and development. Glob. Health J. 2022, 6, 217–226. [Google Scholar] [CrossRef]
- Balhaddad, A.A.; Garcia, I.M.; Mokeem, L.; Alsahafi, R.; Majeed-Saidan, A.; Albagami, H.H.; Khan, A.S.; Ahmad, S.; Collares, F.M.; Della Bona, A. Three-dimensional (3D) printing in dental practice: Applications, areas of interest, and level of evidence. Clin. Clin. Clin. Oral Investig. 2023, 27, 2465–2481. [Google Scholar] [CrossRef] [PubMed]
| Technology | Accuracy & Resolution | Speed | Cost | Best Suited for |
|---|---|---|---|---|
| SLA | Very high | Moderate | Moderate | Surgical guides, crowns, bridges [5] |
| FDM | Moderate | High | Low | Educational models, prototypes [15] |
| SLS | High | High | High | Durable prosthetics frameworks [12] |
| DLP | Very high | High | Moderate | Detailed restorations aligners [3] |
| PolyJet | High | Moderate | High | Multi-material models and training tools [13] |
| Material Type | Biocompatibility | Strength | Aesthetics | Cost | Typical Applications |
|---|---|---|---|---|---|
| Polymers | High (e.g., PLA, PMMA, PEEK) | Moderate to High | Good (e.g., resins) | Low to Moderate | Crowns, Bridges, Surgical Guides |
| Metals | High (e.g., Titanium, Cobalt-Chrome) | Very High | Moderate | High | Implants, Frameworks |
| Ceramics/Composites | High (e.g., Zirconia, Alumina, Glass Ceramics) | High | Excellent | Moderate to High | Crowns, Bridges, Implant Abutments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monalisa, S.; Alipuor, M.; Paul, D.; Rahman, M.A.; Siddika, N.; Apu, E.H.; Mostafiz, R.B. Transforming Dental Care, Practice and Education with Additive Manufacturing and 3D Printing: Innovations in Materials, Technologies, and Future Pathways. Dent. J. 2025, 13, 555. https://doi.org/10.3390/dj13120555
Monalisa S, Alipuor M, Paul D, Rahman MA, Siddika N, Apu EH, Mostafiz RB. Transforming Dental Care, Practice and Education with Additive Manufacturing and 3D Printing: Innovations in Materials, Technologies, and Future Pathways. Dentistry Journal. 2025; 13(12):555. https://doi.org/10.3390/dj13120555
Chicago/Turabian StyleMonalisa, Shilthia, Mahdieh Alipuor, Debangshu Paul, Md Ataur Rahman, Nazeeba Siddika, Ehsanul Hoque Apu, and Rubayet Bin Mostafiz. 2025. "Transforming Dental Care, Practice and Education with Additive Manufacturing and 3D Printing: Innovations in Materials, Technologies, and Future Pathways" Dentistry Journal 13, no. 12: 555. https://doi.org/10.3390/dj13120555
APA StyleMonalisa, S., Alipuor, M., Paul, D., Rahman, M. A., Siddika, N., Apu, E. H., & Mostafiz, R. B. (2025). Transforming Dental Care, Practice and Education with Additive Manufacturing and 3D Printing: Innovations in Materials, Technologies, and Future Pathways. Dentistry Journal, 13(12), 555. https://doi.org/10.3390/dj13120555

