Relationship Between Virulence Factor Activities, Cytotoxicity of Candida albicans Strains Isolated from Oral Cavity, and Cytokine Production by Oral Keratinocytes Exposed to Those Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Collection and Identification of Samples
2.3. Oral Keratinocyte Cells
2.4. Biofilm Formation
2.5. Phospholipase Assay
2.6. LDH Release Assay
2.7. Cytokine Determination
2.8. Statistical Analysis
3. Results
3.1. Relationship Between Amounts of Cytokines Produced by Oral Keratinocytes When Exposed to C. albicans Strains
3.2. Relationships Among Biofilm Formation, Phospholipase Production, and Cytotoxicity of C. albicans Strains Toward Oral Keratinocytes
3.3. Relationships of Virulence Factors and Cytotoxicity of C. albicans Strains Towards Oral Keratinocytes with Amounts of Cytokines Produced by Oral Keratinocytes Following Exposure to Those Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akpan, A.; Morgan, R. Oral Candidiasis. Postgrad. Med. J. 2002, 78, 455–459. [Google Scholar] [CrossRef]
- Taylor, M.; Brizuela, M.; Raja, A. Oral Candidiasis; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Monsen, R.E.; Kristoffersen, A.K.; Gay, C.L.; Herlofson, B.B.; Fjeld, K.G.; Hove, L.H.; Nordgarden, H.; Tollisen, A.; Lerdal, A.; Enersen, M. Identification and susceptibility testing of oral candidiasis in advanced cancer patients. BMC Oral Health 2023, 23, 223. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical appearance of oral candida infection and therapeutic strategies. Front. Microbiol. 2015, 6, 1391. [Google Scholar] [CrossRef]
- Flevari, A.; Theodorakopoulou, M.; Velegraki, A.; Armaganidis, A.; Dimopoulos, G. Treatment of invasive candidiasis in the elderly: A review. Clin. Interv. Aging 2013, 8, 1199–1208. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Satala, D.; Gonzalez-Gonzalez, M.; Smolarz, M.; Surowiec, M.; Kulig, K.; Wronowska, E.; Zawrotniak, M.; Kozik, A.; Rapala-Kozik, M.; Karkowska-Kuleta, J. The role of Candida albicans virulence factors in the formation of multispecies biofilms with bacterial periodontal pathogens. Front. Cell. Infect. Microbiol. 2022, 11, 765942. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Nobile, C.J. Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes Infect. 2016, 18, 310–321. [Google Scholar] [CrossRef]
- Ghannoum, M.A. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 2000, 13, 122–143. [Google Scholar] [CrossRef]
- Sherwood, J.; Gow, N.A.; Gooday, G.W.; Gregory, D.W.; Marshall, D. Contact sensing in Candida albicans: A possible aid to epithelial penetration. J. Med. Vet. Mycol. 1992, 30, 461–469. [Google Scholar] [CrossRef]
- Jacobsen, I.D. The role of host and fungal factors in the commensal-to-pathogen transition of Candida albicans. Curr. Clin. Microbiol. Rep. 2023, 10, 55–65. [Google Scholar] [CrossRef]
- Ishida, Y.; Ohta, K.; Naruse, T.; Kato, H.; Fukui, A.; Shigeishi, H.; Nishi, H.; Tobiume, K.; Takechi, M. Candida albicans β-Glucan-containing particles increase HO-1 expression in oral keratinocytes via a reactive oxygen species/P38 mitogen-activated protein kinase/Nrf2 pathway. Infect. Immun. 2018, 86, e00575-17. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Nishi, H.; Fukui, A.; Shigeishi, H.; Takechi, M.; Kamata, N. CX3CL1 expression induced by Candida albicans in oral fibroblasts. FEMS Immunol. Med. Microbiol. 2010, 60, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Naglik, J.R.; Moyes, D.L.; Wächtler, B.; Hube, B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 2011, 13, 963–976. [Google Scholar] [CrossRef]
- Dongari-Bagtzoglou, A.; Kashleva, H.; Villar, C.C. Bioactive interleukin-1alpha Is cytolytically released from Candida albicans-infected oral epithelial cells. Med. Mycol. 2004, 42, 531–541. [Google Scholar] [CrossRef][Green Version]
- Mostefaoui, Y.; Claveau, I.; Rouabhia, M. In vitro analyses of tissue structure and interleukin-1beta expression and production by human oral mucosa in response to Candida albicans infections. Cytokine 2004, 25, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Mailhammer, R.; Grassl, G.; Sander, C.A.; Hube, B.; Korting, H.C. Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J. Investig. Dermatol. 2002, 118, 652–657. [Google Scholar] [CrossRef]
- Tanaka, Y.; Zhang, L.; Ikuta, T.; Omori, J.; Omine, H.; Mega, J.; Kuboyama, N.; Abiko, Y. TNF-α expression in oral Candida albicans-infected human gingival epithelial cells. Int. J. Oral-Med. Sci. 2011, 10, 77–82. [Google Scholar] [CrossRef][Green Version]
- Odds, F.C.; Bernaerts, R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 1994, 32, 1923–1929. [Google Scholar] [CrossRef]
- Fujimoto, R.; Kamata, N.; Yokoyama, K.; Taki, M.; Tomonari, M.; Tsutsumi, S.; Yamanouchi, K.; Nagayama, M. Establishment of immortalized human oral keratinocytes by gene transfer of a telomerase component. J. Jpn. Soc. Oral Mucous Membr. 2002, 8, 1–8. [Google Scholar] [CrossRef]
- Naruse, T.; Ohta, K.; Kato, H.; Ishida, Y.; Shigeishi, H.; Sakuma, M.; Fukui, A.; Nakagawa, T.; Tobiume, K.; Nishi, H.; et al. Immune response to cytosolic DNA via intercellular receptor modulation in oral keratinocytes and fibroblasts. Oral Dis. 2022, 28, 150–163. [Google Scholar] [CrossRef]
- Kitasaki, H.; Ohta, K.; Akagi, M.; Niitani, Y.; Kaneyasu, Y.; Maehara, T.; Yano, K.; Shiba, F.; Shigeishi, H.; Takemoto, T. Effects of cigarette smoke extract on CXCL8 and CXCL1 expression in oral keratinocytes induced by synthetic bacterial lipoprotein Pam3CSK4. Oral Sci. Int. 2025, 22, e70006. [Google Scholar] [CrossRef]
- Ohta, K.; Shigeishi, H.; Taki, M.; Nishi, H.; Higashikawa, K.; Takechi, M.; Kamata, N. Regulation of CXCL9/10/11 in oral keratinocytes and fibroblasts. J. Dent. Res. 2008, 87, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Dhale, R.P.; Ghorpade, M.V.; Dharmadhikari, C.A. Comparison of various methods used to detect biofilm production of Candida species. J. Clin. Diagn. Res. JCDR 2014, 8, DC18–DC20. [Google Scholar] [CrossRef]
- Villar-Vidal, M.; Marcos-Arias, C.; Eraso, E.; Quindós, G. Variation in biofilm formation among blood and oral isolates of Candida albicans and Candida dubliniensis. Enferm. Infecc. Microbiol. Clin. 2011, 29, 660–665. [Google Scholar] [CrossRef]
- McCall, A.D.; Pathirana, R.U.; Prabhakar, A.; Cullen, P.J.; Edgerton, M. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. Npj Biofilms Microbiomes 2019, 5, 21. [Google Scholar] [CrossRef]
- Leerahakan, P.; Matangkasombut, O.; Tarapan, S.; Lam-ubol, A. Biofilm formation of Candida isolates from xerostomic post-radiotherapy head and neck cancer patients. Arch. Oral Biol. 2022, 142, 105495. [Google Scholar] [CrossRef]
- Price, M.F.; Wilkinson, I.D.; Gentry, L.O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 1982, 20, 7–14. [Google Scholar] [CrossRef]
- Ellepola, A.N.B.; Samaranayake, L.P.; Khan, Z.U. Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics. Braz. J. Microbiol. 2016, 47, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Legrand, C.; Bour, J.M.; Jacob, C.; Capiaumont, J.; Martial, A.; Marc, A.; Wudtke, M.; Kretzmer, G.; Demangel, C.; Duval, D.; et al. Lactate Dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J. Biotechnol. 1992, 25, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Guilford, J.P. Fundamental Statistics in Psychology and Education; McGraw Hill: New York, NY, USA, 1956. [Google Scholar]
- Dongari-Bagtzoglou, A.; Kashleva, H. Candida albicans triggers interleukin-8 secretion by oral epithelial cells. Microb. Pathog. 2003, 34, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Dongari-Bagtzoglou, A.; Kashleva, H. Granulocyte-Macrophage Colony-Stimulating factor responses of oral epithelial cells to Candida albicans. Oral Microbiol. Immunol. 2003, 18, 165–170. [Google Scholar] [CrossRef]
- Swidergall, M.; Solis, N.V.; Millet, N.; Huang, M.Y.; Lin, J.; Phan, Q.T.; Lazarus, M.D.; Wang, Z.; Yeaman, M.R.; Mitchell, A.P.; et al. Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathog. 2021, 17, e1009221. [Google Scholar] [CrossRef]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 1996, 87, 2095–2147. [Google Scholar] [CrossRef]
- Villar, C.C.; Zhao, X.R. Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells. Mol. Oral Microbiol. 2010, 25, 215–225. [Google Scholar] [CrossRef]
- Wang, P.; Qian, H.; Xiao, M.; Lv, J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun. Inflamm. Dis. 2023, 11, e762. [Google Scholar] [CrossRef]
- Di Cosola, M.; Cazzolla, A.P.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Santacroce, L. Candida albicans and oral carcinogenesis. A brief review. J. Fungi 2021, 7, 476. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An evolving chemokine. Cytokine 2022, 153, 155828. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rautemaa, R.; Hietanen, J.; Järvensivu, A.; Richardson, M.; Konttinen, Y.T. Expression of interleukin-8 and its receptor IL-8RA in chronic hyperplastic Candidosis. Oral Microbiol. Immunol. 2006, 21, 223–230. [Google Scholar] [CrossRef]
- Luster, A.D. Chemokines--chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 1998, 338, 436–445. [Google Scholar] [CrossRef]
- Bai, W.; Wang, Q.; Deng, Z.; Li, T.; Xiao, H.; Wu, Z. TRAF1 suppresses antifungal immunity through CXCL1-mediated neutrophil recruitment during Candida albicans intradermal infection. Cell Commun. Signal. CCS 2020, 18, 30. [Google Scholar] [CrossRef]
- Swamydas, M.; Gao, J.-L.; Break, T.J.; Johnson, M.D.; Jaeger, M.; Rodriguez, C.A.; Lim, J.K.; Green, N.M.; Collar, A.L.; Fischer, B.G.; et al. CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci. Transl. Med. 2016, 8, 322ra10. [Google Scholar] [CrossRef]
- Müller, V.; Viemann, D.; Schmidt, M.; Endres, N.; Ludwig, S.; Leverkus, M.; Roth, J.; Goebeler, M. Candida albicans triggers activation of distinct signaling pathways to establish a proinflammatory gene expression program in primary human endothelial cells. J. Immunol. 2007, 179, 8435–8445. [Google Scholar] [CrossRef] [PubMed]
- Sprague, J.L.; Schille, T.B.; Allert, S.; Trümper, V.; Lier, A.; Großmann, P.; Priest, E.L.; Tsavou, A.; Panagiotou, G.; Naglik, J.R.; et al. Candida albicans translocation through the intestinal epithelial barrier is promoted by fungal zinc acquisition and limited by NFκB-mediated barrier protection. PLoS Pathog. 2024, 20, e1012031. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, C.H.; Roberts, A.I.; Das, J.; Xu, G.; Ren, G.; Zhang, Y.; Zhang, L.; Yuan, Z.R.; Tan, H.S.W.; et al. Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and T-cell responses: What we do and don’t know. Cell Res. 2006, 16, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Thiruppathi, M.; Elshabrawy, H.A.; Alharshawi, K.; Kumar, P.; Prabhakar, B.S. GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. Cytokine 2015, 75, 261–271. [Google Scholar] [CrossRef]
- Khameneh, H.J.; Isa, S.A.B.M.; Min, L.; Nih, F.W.; Ruedl, C. GM-CSF signalling boosts dramatically IL-1 production. PLoS ONE 2011, 6, e23025. [Google Scholar] [CrossRef]
- Kuhn, D.M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect. Immun. 2002, 70, 878–888. [Google Scholar] [CrossRef]
- Ouchi, C.; Hasebe, A.; Sakata, K.; Sato, J.; Yamazaki, Y.; Ohga, N.; Kitagawa, Y. Genotypes and virulence-related activities of Candida albicans derived from oral cavity of patients in Hokkaido. Arch. Oral Biol. 2024, 157, 105827. [Google Scholar] [CrossRef]



| IL-1β | TNF-α | CXCL1 | IL-8 | CCL20 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| rs | p Value | rs | p Value | rs | p Value | rs | p Value | rs | p Value | |
| TNF-α | −0.145 | 0.179 | ||||||||
| CXCL1 | 0.062 | 0.569 | 0.09 | 0.408 | ||||||
| IL-8 | 0.35 | 0.0009 *** | 0.055 | 0.614 | 0.295 | 0.0055 ** | ||||
| CCL20 | 0.023 | 0.836 | 0.038 | 0.73 | 0.073 | 0.503 | 0.193 | 0.073 | ||
| GM-CSF | 0.38 | 0.0003 *** | 0.043 | 0.696 | 0.072 | 0.508 | 0.306 | 0.004 ** | −0.021 | 0.85 |
| rs | p Value | |
|---|---|---|
| Biofilm formation vs. phospholipase | 0.083 | 0.442 |
| Biofilm formation vs. LDH | 0.04 | 0.717 |
| Phospholipase vs. LDH | 0.024 | 0.826 |
| Biofilm Formation | Phospholipase | LDH | ||||
|---|---|---|---|---|---|---|
| rs | p Value | rs | p Value | rs | p Value | |
| IL-1β | −0.028 | 0.799 | −0.061 | 0.572 | 0.736 | <0.0001 *** |
| TNF-α | −0.027 | 0.802 | −0.049 | 0.656 | −0.157 | 0.147 |
| CXCL1 | −0.007 | 0.952 | −0.069 | 0.527 | 0.162 | 0.135 |
| IL-8 | −0.167 | 0.122 | 0.018 | 0.866 | 0.371 | 0.0004 *** |
| CCL20 | −0.19 | 0.078 | 0.14 | 0.195 | 0.115 | 0.289 |
| GM-CSF | 0.039 | 0.722 | −0.023 | 0.834 | 0.179 | 0.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, K.; Nishi, H.; Shigeishi, H.; Kaneyasu, Y.; Niitani, Y.; Kitasaki, H.; Kawaguchi, H.; Takamoto, M.; Shiba, F.; Takemoto, T.; et al. Relationship Between Virulence Factor Activities, Cytotoxicity of Candida albicans Strains Isolated from Oral Cavity, and Cytokine Production by Oral Keratinocytes Exposed to Those Strains. Dent. J. 2025, 13, 502. https://doi.org/10.3390/dj13110502
Yano K, Nishi H, Shigeishi H, Kaneyasu Y, Niitani Y, Kitasaki H, Kawaguchi H, Takamoto M, Shiba F, Takemoto T, et al. Relationship Between Virulence Factor Activities, Cytotoxicity of Candida albicans Strains Isolated from Oral Cavity, and Cytokine Production by Oral Keratinocytes Exposed to Those Strains. Dentistry Journal. 2025; 13(11):502. https://doi.org/10.3390/dj13110502
Chicago/Turabian StyleYano, Kanako, Hiromi Nishi, Hideo Shigeishi, Yoshino Kaneyasu, Yoshie Niitani, Honami Kitasaki, Hiroyuki Kawaguchi, Megumi Takamoto, Fumie Shiba, Toshinobu Takemoto, and et al. 2025. "Relationship Between Virulence Factor Activities, Cytotoxicity of Candida albicans Strains Isolated from Oral Cavity, and Cytokine Production by Oral Keratinocytes Exposed to Those Strains" Dentistry Journal 13, no. 11: 502. https://doi.org/10.3390/dj13110502
APA StyleYano, K., Nishi, H., Shigeishi, H., Kaneyasu, Y., Niitani, Y., Kitasaki, H., Kawaguchi, H., Takamoto, M., Shiba, F., Takemoto, T., & Ohta, K. (2025). Relationship Between Virulence Factor Activities, Cytotoxicity of Candida albicans Strains Isolated from Oral Cavity, and Cytokine Production by Oral Keratinocytes Exposed to Those Strains. Dentistry Journal, 13(11), 502. https://doi.org/10.3390/dj13110502

