Comparison of Conventional Root Tip Resection with Digitally Guided Resection—An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Variables and Data Collection Methods
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBCT | Cone-beam computed tomography |
DNS | Dynamic navigation systems |
FH | Free-handed |
References
- Dioguardi, M.; Stellacci, C.; La Femina, L.; Spirito, F.; Sovereto, D.; Laneve, E.; Manfredonia, M.F.; D’Alessandro, A.; Ballini, A.; Cantore, S.; et al. Comparison of Endodontic Failures between Nonsurgical Retreatment and Endodontic Surgery: Systematic Review and Meta-Analysis with Trial Sequential Analysis. Medicina 2022, 58, 894. [Google Scholar] [CrossRef]
- Setzer, F.C.; Shah, S.B.; Kohli, M.R.; Karabucak, B.; Kim, S. Outcome of endodontic surgery: A meta-analysis of the literature—Part 1: Comparison of traditional root-end surgery and endodontic microsurgery. J. Endod. 2010, 36, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Kassenzahnärztliche Bundesvereinigung (KZBV). Statistische Basisdaten zur vertragszahnärztlichen Versorgung 2023. 2023. Available online: https://www.kzbv.de/kzbv2023-jahrbuch-web-ohnegoz.media.9083f41ba25e0a1dfbdf6b349f333c2b.pdf (accessed on 1 April 2023).
- von Arx, T. Apical surgery: A review of current techniques and outcome. Saudi Dent. J. 2011, 23, 9–15. [Google Scholar] [CrossRef]
- Kang, M.; Kim, E. Euiseong Kim Healing Outcome after Maxillary Sinus Perforation in Endodontic Microsurgery. J. Korean Dent. Sci. 2024, 9, 28–34. [Google Scholar] [CrossRef]
- Von Arx, T.; Bolt, S.; Bornstein, M.M. Neurosensory Disturbances After Apical Surgery of Mandibular Premolars and Molars: A Retrospective Analysis and Case-Control Study. Eur. Endod. J. 2021, 6, 247–253. [Google Scholar] [CrossRef]
- Chugal, N.; Assad, H.; Markovic, D.; Mallya, S.M. Applying the American Association of Endodontists and American Academy of Oral and Maxillofacial Radiology guidelines for cone-beam computed tomography prescription: Impact on endodontic clinical decisions. J. Am. Dent. Assoc. 2024, 155, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Surya, S.; Barua, A.N.D.; Magar, S.P.; Magar, S.S.; Rela, R.; Chhabada, A.K. Comparative Assessment of the Efficacy of Two-Dimensional Digital Intraoral Radiography to Three-Dimensional Cone Beam Computed Tomography in the Diagnosis of Periapical Pathologies. J. Pharm. Bioallied Sci. 2022, 14, S1009–S1013. [Google Scholar] [CrossRef]
- D’haese, J.; Ackhurst, J.; Wismeijer, D.; De Bruyn, H.; Tahmaseb, A. Current state of the art of computer-guided implant surgery. Periodontology 2000 2017, 73, 121–133. [Google Scholar] [CrossRef]
- Tsokkou, S.; Konstantinidis, I.; Keramas, A.; Kiosis, G.; Skourtsidis, K.; Alexiou, D.; Keskesiadou, G.-N.; Karachrysafi, S.; Papamitsou, T.; Chatzistefanou, I. Comparative Analysis of Fully Guided and Free-Hand Orthognathic Surgery: Advancements, Precision, and Clinical Outcomes. Dent. J. 2025, 13, 260. [Google Scholar] [CrossRef]
- Spille, J.; Helmstetter, E.; Kübel, P.; Weitkamp, J.-T.; Wagner, J.; Wieker, H.; Naujokat, H.; Flörke, C.; Wiltfang, J.; Gülses, A. Learning Curve and Comparison of Dynamic Implant Placement Accuracy Using a Navigation System in Young Professionals. Dent. J. 2022, 10, 187. [Google Scholar] [CrossRef]
- Gargallo-Albiol, J.; Barootchi, S.; Salomó-Coll, O.; Wang, H.-L. Advantages and disadvantages of implant navigation surgery. A systematic review. Ann. Anat. 2019, 225, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Setzer, F.C.; Shi, K.J.; Zhang, Z.; Yan, H.; Yoon, H.; Mupparapu, M.; Li, J. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J. Endod. 2020, 46, 987–993. [Google Scholar] [CrossRef]
- Ganz, S.D. Fully-Guided Placement of Dental Implants Utilizing Nasopalatine Canal Fixation in a Novel Rotational Path Surgical Template Design: A Retrospective Case Series. J. Dent. 2025, 163, 106085. [Google Scholar] [CrossRef]
- Hung, M.; Yevseyevich, D.; Khazana, M.; Schwartz, C.; Lipsky, M.S. Charting New Territory: AI Applications in Dental Caries Detection from Panoramic Imaging. Dent. J. 2025, 13, 366. [Google Scholar] [CrossRef]
- Firincioglulari, M.; Boztuna, M.; Mirzaei, O.; Karanfiller, T.; Akkaya, N.; Orhan, K. Segmentation of Pulp and Pulp Stones with Automatic Deep Learning in Panoramic Radiographs: An Artificial Intelligence Study. Dent. J. 2025, 13, 274. [Google Scholar] [CrossRef]
- Satapathy, S.K.; Kunam, A.; Rashme, R.; Sudarsanam, P.P.; Gupta, A.; Kumar, H.S.K. AI-Assisted Treatment Planning for Dental Implant Placement: Clinical vs AI-Generated Plans. J. Pharm. Bioallied Sci. 2024, 16, S939–S941. [Google Scholar] [CrossRef]
- Negrete, D.; Lopes, S.L.P.d.C.; Barretto, M.D.d.A.; Moura, N.B.d.; Nahás, A.C.R.; Costa, A.L.F. Artificial Intelligence and Dentomaxillofacial Radiology Education: Innovations and Perspectives. Dent. J. 2025, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Aldahmash, S.A.; Price, J.B.; Mostoufi, B.; Griffin, I.L.; Dianat, O.; Tordik, P.A.; Martinho, F.C. Real-time 3-dimensional Dynamic Navigation System in Endodontic Microsurgery: A Cadaver Study. J. Endod. 2022, 48, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Dianat, O.; Nosrat, A.; Mostoufi, B.; Price, J.B.; Gupta, S.; Martinho, F.C. Accuracy and efficiency of guided root-end resection using a dynamic navigation system: A human cadaver study. Int. Endod. J. 2021, 54, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Galli, M.; Stefanelli, L.V.; Di Nardo, D.; Morese, A.; Seracchiani, M.; De Angelis, F.; Di Carlo, S.; Testarelli, L. Endodontic Microsurgery Using Dynamic Navigation System: A Case Report. J. Endod. 2019, 45, 1397–1402.e6. [Google Scholar] [CrossRef]
- Spille, J.; Bube, N.; Wagner, J.; Spille, D.; Birkenfeld, F.; Kübel, P.; Wiltfang, J.; Gülses, A. Navigational exploration of bony defect mimicking a solid lesion of the mandible compared to conventional surgery by young professionals. J. Stomatol. Oral. Maxillofac. Surg. 2023, 125, 101588. [Google Scholar] [CrossRef] [PubMed]
- The Slicer Community. 3D Slicer (Version 5.6.1) [Computer Software]. Published Online 25 December 2023. Available online: https://www.slicer.org/ (accessed on 6 January 2024).
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- The Jamovi Project. The Jamovi (Version 2.6) [Computer Software]. Published online 20 August 2024. Available online: https://www.jamovi.org/ (accessed on 8 October 2024).
- Mezger, U.; Jendrewski, C.; Bartels, M. Navigation in surgery. Langenbecks Arch. Surg. 2013, 398, 501–514. [Google Scholar] [CrossRef]
- Spille, J.; Jin, F.; Behrens, E.; Açil, Y.; Lichtenstein, J.; Naujokat, H.; Gülses, A.; Flörke, C.; Wiltfang, J. Comparison of implant placement accuracy in two different preoperative digital workflows: Navigated vs. pilot-drill-guided surgery. Int. J. Implants Dent. 2021, 7, 45. [Google Scholar] [CrossRef]
- Varg, E., Jr.; Antal, M.; Major, L.; Kiscsatári, R.; Braunitzer, G.; Piffkó, J. Guidance means accuracy: A randomized clinical trial on freehand versus guided dental implantation. Clin. Oral Implant Res. 2020, 31, 417–430. [Google Scholar] [CrossRef]
- Block, M.S.; Emery, R.W.; Cullum, D.R.; Sheikh, A. Implant Placement Is More Accurate Using Dynamic Navigation. J. Oral Maxillofac. Surg. 2017, 75, 1377–1386. [Google Scholar] [CrossRef]
- Somogyi-Ganss, E.; Holmes, H.I.; Jokstad, A. Accuracy of a novel prototype dynamic computer-assisted surgery system. Clin. Oral Implants Res. 2015, 26, 882–890. [Google Scholar] [CrossRef]
- Buniag, A.G.; Pratt, A.M.; Ray, J.J. Targeted Endodontic Microsurgery: A Retrospective Outcomes Assessment of 24 Cases. J. Endod. 2021, 47, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, T.K.; Wealleans, J.A.; Pratt, A.M.; Ray, J.J. Targeted endodontic microsurgery and endodontic microsurgery: A surgical simulation comparison. Int. Endod. J. 2020, 53, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.-Y.; Kim, N.-H.; Kim, S.; Karabucak, B.; Kim, E. Computer-aided Design/Computer-aided Manufacturing-guided Endodontic Surgery: Guided Osteotomy and Apex Localization in a Mandibular Molar with a Thick Buccal Bone Plate. J. Endod. 2018, 44, 665–670. [Google Scholar] [CrossRef]
- Giacomino, C.M.; Ray, J.J.; Wealleans, J.A. Targeted Endodontic Microsurgery: A Novel Approach to Anatomically Challenging Scenarios Using 3-dimensional-printed Guides and Trephine Burs-A Report of 3 Cases. J. Endod. 2018, 44, 671–677. [Google Scholar] [CrossRef]
- Martinho, F.C.; Rollor, C.; Westbrook, K.; Aldahmash, S.A.; Fay, G.G.; Rivera, E.; Parsa, A.; Price, J.B.; Tordik, P.A. A Cadaver-based Comparison of Sleeve-guided Implant-drill and Dynamic Navigation Osteotomy and Root-end Resections. J. Endod. 2023, 49, 1004–1011. [Google Scholar] [CrossRef]
- Kunzendorf, B.; Naujokat, H.; Wiltfang, J. Indications for 3-D diagnostics and navigation in dental implantology with the focus on radiation exposure: A systematic review. Int. J. Implant Dent. 2021, 7, 52. [Google Scholar] [CrossRef]
- Antony, D.P.; Thomas, T.; Nivedhitha, M. Two-dimensional Periapical, Panoramic Radiography Versus Three-dimensional Cone-beam Computed Tomography in the Detection of Periapical Lesion After Endodontic Treatment: A Systematic Review. Cureus 2020, 12, e7736. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, R.; Kirkevang, L.-L.; Hørsted-Bindslev, P.; Wenzel, A. Randomized clinical trial of root-end resection followed by root-end filling with mineral trioxide aggregate or smoothing of the orthograde gutta-percha root filling—1-year follow-up. Int. Endod. J. 2009, 42, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kwak, G.H.; Kwak, E.-J.; Song, J.M.; Park, H.R.; Jung, Y.-H.; Cho, B.-H.; Hui, P.; Hwang, J.J. Automatic mandibular canal detection using a deep convolutional neural network. Sci. Rep. 2020, 10, 5711. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.; Hernandez, P.; Budin, F.; Chittajallu, D.; Vimort, J.-B.; Walters, R.; Mol, A.; Khan, A.; Paniagua, B. Automatic quantification framework to detect cracks in teeth. Proc. SPIE Int. Soc. Opt. Eng. 2018, 10578, 105781K. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Fan, S.; Chow, J.K.-F. Robotics in Dental Implantology. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 513–518. [Google Scholar] [CrossRef]
- Xi, S.; Hu, J.; Yue, G.; Wang, S. Accuracy of an autonomous dental implant robotic system in placing tilted implants for edentulous arches. J. Prosthet. Dent. 2024. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Liu, Y.; Ma, D.; Wu, Z.; Wang, H.; Bai, S.; Zhao, Y. Comparing the accuracy and treatment time of a robotic and dynamic navigation system in osteotomy and root-end resection: An in vitro study. Int. Endod. J. 2025, 58, 529–540. [Google Scholar] [CrossRef]
Operation Method | n | Mean Value | Standard Deviation | |
---|---|---|---|---|
Horizontal incision length in mm | Conventional | 20 | 17.65 | 5.91 |
Navigated | 20 | 16.25 | 5.48 | |
Resected bone volume in mm [3] | Conventional | 20 | 67.23 | 21.57 |
Navigated | 20 | 37.32 | 22.97 | |
Length of removed apex in mm | Conventional | 18 | 3.21 | 1.11 |
Navigated | 18 | 2.63 | 0.44 | |
Time in seconds | Conventional | 20 | 329.65 | 201.98 |
Navigated | 20 | 345.5 | 170.01 | |
Vertical incision length in mm | Conventional | 20 | 7.1 | 4.38 |
Navigated | 20 | 7.5 | 4.14 |
Test | p | Effect Strength | ||
---|---|---|---|---|
Horizontal incision length | Student’s t | 0.442 | Cohens d | 0.246 |
Resected bone volume | Student’s t | <0.001 | Cohens d | 1.342 |
Length of removed apex | Mann–Whitney U | 0.054 | Biserial rank correlation | 0.380 |
Time in seconds | Mann–Whitney U | 0.499 | Biserial rank correlation | 0.128 |
Vertical incision length | Mann–Whitney U | 0.433 | Biserial rank correlation | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kübel, P.; Gülses, A.; Wagner, J.; Hinrichs, C.; Wiltfang, J.; Spille, J. Comparison of Conventional Root Tip Resection with Digitally Guided Resection—An In Vitro Study. Dent. J. 2025, 13, 464. https://doi.org/10.3390/dj13100464
Kübel P, Gülses A, Wagner J, Hinrichs C, Wiltfang J, Spille J. Comparison of Conventional Root Tip Resection with Digitally Guided Resection—An In Vitro Study. Dentistry Journal. 2025; 13(10):464. https://doi.org/10.3390/dj13100464
Chicago/Turabian StyleKübel, Paul, Aydin Gülses, Juliane Wagner, Cedric Hinrichs, Jörg Wiltfang, and Johannes Spille. 2025. "Comparison of Conventional Root Tip Resection with Digitally Guided Resection—An In Vitro Study" Dentistry Journal 13, no. 10: 464. https://doi.org/10.3390/dj13100464
APA StyleKübel, P., Gülses, A., Wagner, J., Hinrichs, C., Wiltfang, J., & Spille, J. (2025). Comparison of Conventional Root Tip Resection with Digitally Guided Resection—An In Vitro Study. Dentistry Journal, 13(10), 464. https://doi.org/10.3390/dj13100464