Texture Analysis of Temporomandibular Joint Disc Changes Associated with Effusion Using Magnetic Resonance Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MRI
2.3. Image Analysis
2.4. Image Processing
2.5. Texture Analysis
- Null hypothesis: it is not possible to differentiate between texture parameter(s) of images of the articular disc extracted from MRI slices of patients with effusion and those without it.
- Alternative hypothesis: it is possible to differentiate between texture parameter(s) of images of the articular disc extracted from the MRI slices of patients with effusion and those without it.
2.6. Statistical Analysis
3. Results
- Average between all directions for each of the parameters;
- Direction S(1,0).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaa, U.; Hüls, A. Biophysical properties of the articular disc tissue and their functional evaluation. Dtsch. Zahnarztl. Z. 1989, 44, S75–S78. [Google Scholar]
- Ito, S.; Mine, Y.; Yoshimi, Y.; Takeda, S.; Tanaka, A.; Onishi, A.; Peng, T.-Y.; Nakamoto, T.; Nagasaki, T.; Kakimoto, N. Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning. Sci. Rep. 2022, 12, 221. [Google Scholar] [CrossRef]
- Behzadi, F.; Mandell, J.C.; Smith, S.E.; Guenette, J.P. Temporomandibular joint imaging: Current clinical applications, biochemical comparison with the intervertebral disc and knee meniscus, and opportunities for advancement. Skelet. Radiol. 2020, 49, 1183–1193. [Google Scholar] [CrossRef]
- Tanaka, E.; Detamore, M.; Mercuri, L. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J. Dent. Res. 2008, 87, 296–307. [Google Scholar] [CrossRef]
- Detamore, M.S.; Athanasiou, K.A. Structure and function of the temporomandibular joint disc: Implications for tissue engineering. J. Oral Maxillofac. Surg. 2003, 61, 494–506. [Google Scholar] [CrossRef]
- Melo, V.; Monteiro, L.; Orge, C.; Sales, M.; Melo, J.; Rodrigues, B.; Melo, A. Prevalence of temporomandibular disorders in the Brazilian population: A systematic review and meta-analysis. CRANIO® 2023, 1–8, online ahead of print. [Google Scholar] [CrossRef]
- Roh, H.-S.; Kim, W.; Kim, Y.-K.; Lee, J.-Y. Relationships between disk displacement, joint effusion, and degenerative changes of the TMJ in TMD patients based on MRI findings. J. Cranio-Maxillofac. Surg. 2012, 40, 283–286. [Google Scholar] [CrossRef]
- Westesson, P.-L. Reliability and validity of imaging diagnosis of temporomandibular joint disorder. Adv. Dent. Res. 1993, 7, 137–151. [Google Scholar] [CrossRef]
- Mizuhashi, F.; Ogura, I.; Mizuhashi, R.; Watarai, Y.; Oohashi, M.; Suzuki, T.; Saegusa, H. Examination for the Factors Involving to Joint Effusion in Patients with Temporomandibular Disorders Using Magnetic Resonance Imaging. J. Imaging 2023, 9, 101. [Google Scholar] [CrossRef]
- Jacqmot, O.; Van Thielen, B.; Hespel, A.M.; Luijten, P.R.; de Mey, J.; Van Binst, A.; Provyn, S.; Tresignie, J. T2-weighted turbo spin-echo magnetic resonance imaging of canine brain anatomy at 1. 5T, 3T, and 7T field strengths. Anat. Rec. 2022, 305, 222–233. [Google Scholar] [CrossRef]
- Obusez, E.C.; Lowe, M.; Oh, S.-H.; Wang, I.; Bullen, J.; Ruggieri, P.; Hill, V.; Lockwood, D.; Emch, T.; Moon, D. 7T MR of intracranial pathology: Preliminary observations and comparisons to 3T and 1.5 T. Neuroimage 2018, 168, 459–476. [Google Scholar] [CrossRef]
- Platt, T.; Ladd, M.E.; Paech, D. 7 Tesla and beyond: Advanced methods and clinical applications in magnetic resonance imaging. Investig. Radiol. 2021, 56, 705. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, D.A.; Beckett, A.J.; Vu, A.T.; Stockmann, J.; Huber, L.; Ma, S.; Ahn, S.; Setsompop, K.; Cao, X.; Park, S. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nat. Methods 2023, 20, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Whyte, A.; Boeddinghaus, R.; Bartley, A.; Vijeyaendra, R. Imaging of the temporomandibular joint. Clin. Radiol. 2021, 76, 76.e21–76.e35. [Google Scholar] [CrossRef] [PubMed]
- Westesson, P.; Brooks, S. Temporomandibular joint: Relationship between MR evidence of effusion and the presence of pain and disk displacement. AJR Am. J. Roentgenol. 1992, 159, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Farook, T.H.; Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics: A systematic review. J. Oral Rehabil. 2023, 50, 501–521. [Google Scholar] [CrossRef] [PubMed]
- Min, Z.; Li, Y.; Xiong, Y.; Wang, H.; Jiang, N. Specific tissue engineering for temporomandibular joint disc perforation. Cytotherapy 2023, 26, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Preethi, G.; Sornagopal, V. MRI image classification using GLCM texture features. In Proceedings of the 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014; pp. 1–6. [Google Scholar]
- Ghalati, M.K.; Nunes, A.; Ferreira, H.; Serranho, P.; Bernardes, R. Texture analysis and its applications in biomedical imaging: A survey. IEEE Rev. Biomed. Eng. 2021, 15, 222–246. [Google Scholar] [CrossRef]
- Ramola, A.; Shakya, A.K.; Van Pham, D. Study of statistical methods for texture analysis and their modern evolutions. Eng. Rep. 2020, 2, e12149. [Google Scholar] [CrossRef]
- Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Iv, M.; Ou, Y.; Kalpathy-Cramer, J.; Napel, S. Radiomics in brain tumor: Image assessment, quantitative feature descriptors, and machine-learning approaches. Am. J. Neuroradiol. 2018, 39, 208–216. [Google Scholar] [CrossRef]
- Liu, M.Q.; Zhang, X.W.; Fan, W.P.; He, S.L.; Wang, Y.Y.; Chen, Z.Y. Functional changes of the lateral pterygoid muscle in patients with temporomandibular disorders: A pilot magnetic resonance images texture study. Chin. Med. J. 2020, 133, 530–536. [Google Scholar] [CrossRef]
- Willard, V.P.; Kalpakci, K.N.; Reimer, A.J.; Athanasiou, K.A. The regional contribution of glycosaminoglycans to temporomandibular joint disc compressive properties. J. Biomech. Eng. 2012, 134, 011011. [Google Scholar] [CrossRef]
- Ahmad, M.; Hollender, L.; Anderson, Q.; Kartha, K.; Ohrbach, R.; Truelove, E.L.; John, M.T.; Schiffman, E.L. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): Development of image analysis criteria and examiner reliability for image analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Moen, K.; Hellem, S.; Geitung, J.T.; Skartveit, L. A practical approach to interpretation of MRI of the temporomandibular joint. Acta Radiol. 2010, 51, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; D’Abreu, A.; Cendes, F. Temporomandibular joint internal derangement: Association with headache, joint effusion, bruxism, and joint pain. J. Contemp. Dent. Pract. 2008, 9, 9–16. [Google Scholar] [CrossRef]
- Scapino, R.P.; Obrez, A.; Greising, D. Organization and function of the collagen fiber system in the human temporomandibular joint disk and its attachments. Cells Tissues Organs 2006, 182, 201–225. [Google Scholar] [CrossRef] [PubMed]
- Drace, J.E.; Enzmann, D.R. Defining the normal temporomandibular joint: Closed-, partially open-, and open-mouth MR imaging of asymptomatic subjects. Radiology 1990, 177, 67–71. [Google Scholar] [CrossRef]
- De Rosa, C.S.; Bergamini, M.L.; Palmieri, M.; Sarmento, D.J.S.; de Carvalho, M.O.; Ricardo, A.L.F.; Hasseus, B.; Jonasson, P.; Braz-Silva, P.H.; Ferreira Costa, A.L. Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis. Heliyon 2020, 6, e05194. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Tasaki, M.M.; Westesson, P.-L.; Isberg, A.M.; Ren, Y.-F.; Tallents, R.H. Classification and prevalence of temporomandibular joint disk displacement in patients and symptom-free volunteers. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 249–262. [Google Scholar] [CrossRef]
- Styles, C.; Whyte, A. MRI in the assessment of internal derangement and pain within the temporomandibular joint: A pictorial essay. Br. J. Oral Maxillofac. Surg. 2002, 40, 220–228. [Google Scholar] [CrossRef]
- Larheim, T.A. Role of magnetic resonance imaging in the clinical diagnosis of the temporomandibular joint. Cells Tissues Organs 2005, 180, 6–21. [Google Scholar] [CrossRef]
- Knezevic, M.J.; Knezevic, A.; Boban, J.; Maletin, A.; Milekic, B.; Koprivica, D.D.; Puskar, T.; Semnic, R. High-Field Magnetic Resonance Imaging of the Temporomandibular Joint Low Agreement with Clinical Diagnosis in Asymptomatic Females. Diagnostics 2023, 13, 1986. [Google Scholar] [CrossRef]
- Tasaki, M.M.; Westesson, P.-L. Temporomandibular joint: Diagnostic accuracy with sagittal and coronal MR imaging. Radiology 1993, 186, 723–729. [Google Scholar] [CrossRef]
- Emshoff, R.; Brandlmaier, I.; Bertram, S.; Rudisch, A. Relative odds of temporomandibular joint pain as a function of magnetic resonance imaging findings of internal derangement, osteoarthrosis, effusion, and bone marrow edema. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2003, 95, 437–445. [Google Scholar] [CrossRef]
- Thomas, N.; Harper, D.; Aronovich, S. Do signs of an effusion of the temporomandibular joint on magnetic resonance imaging correlate with signs and symptoms of temporomandibular joint disease? Br. J. Oral Maxillofac. Surg. 2018, 56, 96–100. [Google Scholar] [CrossRef]
- Lin, W.-C.; Lo, C.-P.; Chiang, I.-C.; Hsu, C.-C.; Hsu, W.-L.; Liu, D.-W.; Juan, Y.-H.; Liu, G.-C. The use of pseudo-dynamic magnetic resonance imaging for evaluating the relationship between temporomandibular joint anterior disc displacement and joint pain. Int. J. Oral Maxillofac. Surg. 2012, 41, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- de Souza Pinto, G.N.; Grossmann, E.; Iwaki Filho, L.; Groppo, F.C.; Poluha, R.L.; Muntean, S.A.; Iwaki, L.C.V. Correlation between joint effusion and morphology of the articular disc within the temporomandibular joint as viewed in the sagittal plane in patients with chronic disc displacement with reduction: A retrospective analytical study from magnetic resonance imaging. CRANIO® 2019, 39, 119–124. [Google Scholar]
- Materka, A. Texture analysis methodologies for magnetic resonance imaging. Dialogues Clin. Neurosci. 2022, 6, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Juras, V.; Toegel, S.; Hager, B.; Schreiner, M.; Janacova, V.; Heule, R.; Laurent, D.; Saxer, F.; Bieri, O.; Raithel, E. Histological Validation of the Textural Features from Quantitative MRI For Determination of Cartilage Degeneration. Osteoarthr. Cartil. 2023, 31, S40–S42. [Google Scholar] [CrossRef]
Texture Parameter | Abbreviation | Description |
---|---|---|
Angular second moment | AngScMom | Measurement of image uniformity |
Contrast | Contrast | Represents the amount of local variation in gray level |
Correlation | Correlat | Linear measure dependence of gray level between neighboring pixels |
Sum of squares | SumOfSqs | Measurement of the dispersion (related to average) of gray-level distribution |
Inverse difference moment | InvDfMom | Homogeneity of the distribution of gray level on the image |
Sum of average | SumAverg | Mean of the distribution of the sum of gray-level values |
Sum of variance | SumVarnc | Dispersion around the mean of the sum distribution of gray level |
Sum of entropy | SumEntrp | Disorganization of the sum distribution of gray level |
Entropy | Entropy | Degree of disorder between pixels in the image |
Difference of variance | DifVarnc | Dispersion of the gray-level difference |
Difference of entropy | DifEntrp | Disorganization of the gray-level difference |
Parameter | Group | Average | Maximum | p-Value | Effect Size |
---|---|---|---|---|---|
AngScMom | Effusion | 0.111 | 0.247 | 0.604 | 0.03 |
No effusion | 0.121 | 1.000 | |||
Contrast | Effusion | 2.820 | 11.400 | 0.891 | 0.01 |
No effusion | 2.950 | 22.100 | |||
Correlat | Effusion | 0.560 | 0.970 | 0.102 | 0.11 |
No effusion | 0.625 | 0.985 | |||
SumOfSqs | Effusion | 5.43 | 40.50 | 0.067 | 0.12 |
No effusion | 6.91 | 65.80 | |||
InvDfMom | Effusion | 0.574 | 0.767 | 0.725 | 0.02 |
No effusion | 0.580 | 1.000 | |||
SumAverg | Effusion | 17.4 | 32.2 | 0.137 | 0.10 |
No effusion | 19.7 | 53.5 | |||
SumVarnc | Effusion | 18.9 | 159.0 | 0.06 | 0.13 |
No effusion | 24.7 | 250.0 | |||
SumEntrp | Effusion | 0.839 | 1.060 | 0.822 | 0.02 |
No effusion | 0.841 | 1.170 | |||
Entropy | Effusion | 1.100 | 1.380 | 0.729 | 0.02 |
No effusion | 1.090 | 1.520 | |||
DifVarnc | Effusion | 0.903 | 4.780 | 0.995 | 0.00 |
No effusion | 0.920 | 7.700 | |||
DifEntrp | Effusion | 0.441 | 0.712 | 0.816 | 0.02 |
No effusion | 0.434 | 0.787 |
Parameter | Group | Average | p-Value | Effect Size |
---|---|---|---|---|
AngScMom | Effusion | 0.122 | 0.678 | 0.03 |
No effusion | 0.132 | |||
Contrast | Effusion | 0.572 | 0.981 | 0.00 |
No effusion | 0.627 | |||
Correlat | Effusion | 0.883 | 0.205 | 0.09 |
No effusion | 0.893 | |||
SumOfSqs | Effusion | 5.47 | 0.070 | 0.12 |
No effusion | 6.95 | |||
InvDfMom | Effusion | 0.762 | 0.848 | 0.01 |
No effusion | 0.763 | |||
SumAverg | Effusion | 17.4 | 0.139 | 0.10 |
No effusion | 19.8 | |||
SumVarnc | Effusion | 21.3 | 0.075 | 0.12 |
No effusion | 27.2 | |||
SumEntrp | Effusion | 0.939 | 0.867 | 0.01 |
No effusion | 0.939 | |||
Entropy | Effusion | 1.090 | 0.963 | 0.00 |
No effusion | 1.090 | |||
DifVarnc | Effusion | 0.291 | 0.982 | 0.00 |
No effusion | 0.311 | |||
DifEntrp | Effusion | 0.321 | 0.969 | 0.00 |
No effusion | 0.318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girondi, C.M.; de Castro Lopes, S.L.P.; Ogawa, C.M.; Braz-Silva, P.H.; Costa, A.L.F. Texture Analysis of Temporomandibular Joint Disc Changes Associated with Effusion Using Magnetic Resonance Images. Dent. J. 2024, 12, 82. https://doi.org/10.3390/dj12030082
Girondi CM, de Castro Lopes SLP, Ogawa CM, Braz-Silva PH, Costa ALF. Texture Analysis of Temporomandibular Joint Disc Changes Associated with Effusion Using Magnetic Resonance Images. Dentistry Journal. 2024; 12(3):82. https://doi.org/10.3390/dj12030082
Chicago/Turabian StyleGirondi, Camila Miorelli, Sérgio Lúcio Pereira de Castro Lopes, Celso Massahiro Ogawa, Paulo Henrique Braz-Silva, and Andre Luiz Ferreira Costa. 2024. "Texture Analysis of Temporomandibular Joint Disc Changes Associated with Effusion Using Magnetic Resonance Images" Dentistry Journal 12, no. 3: 82. https://doi.org/10.3390/dj12030082
APA StyleGirondi, C. M., de Castro Lopes, S. L. P., Ogawa, C. M., Braz-Silva, P. H., & Costa, A. L. F. (2024). Texture Analysis of Temporomandibular Joint Disc Changes Associated with Effusion Using Magnetic Resonance Images. Dentistry Journal, 12(3), 82. https://doi.org/10.3390/dj12030082