Does Low-Taper Root Canal Shaping Decrease the Risk of Root Fracture? A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Eligibility Criteria
- Studies comparing the root fracture resistance of endodontically treated dental elements, shaped with low- or high-conicity taper instruments;
- Human trials (randomized controlled trial and clinical trial);
- In vitro studies;
- Finite element analysis.
- Research involving patients with dental diseases linked to reduced chemical/mechanical teeth strength;
- Studies that used only one type of taper;
- Case reports, case series, reviews, and meta-analyses;
- Papers without the full text being available;
- Papers not in the English language.
2.4. Risk of Bias Assessment
- Item 1. Abstract:
- Item 2. Background and objectives:
- Item 2a. Scientific background and explanation of the rationale.
- Item 2b. Specific objectives and/or hypotheses.
- Item 3. Intervention:
- Item 4. Outcomes:
- Item 5. Sample size:
- Item 6. Randomization and sequence generation:
- Item 7. Allocation concealment mechanism:
- Item 8. Implementation:
- Item 9. Blinding:
- Item 10. Statistical methods:
- Item 11. Results, outcomes, and estimation:
- Item 12. Discussion and limitations:
- Item 13. Funding:
- Item 14. Protocol:
3. Results
3.1. Study Selection
3.2. Risk of Bias
4. Discussion
- The presence of/variations in the number of microcracks observable by micro-CT or under a microscope.
- Variations in the fracture resistance to the fracture load test.
- Variations in the stress distribution, using finite element analysis.
- The paper by Hin et al. compares the incidence of root dentin cracks after root-canal preparation with hand files (40/0.05), a self-adjusting file (SAF), the ProTaper Universal F4 (40/0.06), and Mtwo (40/0.04) [47]; in this study, the group in which manual shaping was used (40/0.05) showed a significantly lower number of microcracks than the group shaped using the ProTaper Universal F4 (40/0.06) and the one shaped with the Mtwo (40/0.04). The reason why the group where shaping was performed with a 0.05 taper shows a lower number of microcracks could be related to the type of instrumentation used. Other authors have shown that manual shaping causes less stress on the root canal walls, compared to rotative instruments [48].
- The study by Aksoy et al. states that the Protaper Universal F2 (25/0.08) system significantly increased the percentage rate of microcracks compared with the XP (25/0) and Reciproc Blu (25/0.08) groups [34]. In this study, the increase in microcracks using a Protaper Universal 25/0.08, compared to another system with the same apical diameter and same instrument taper, is related to the greater stress transmitted to dentin caused by the continuous rotative movement compared to reciprocating movement [55,56,57].
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reeh, E.S.; Messer, H.H.; Douglas, W.H. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J. Endod. 1989, 15, 512–516. [Google Scholar] [CrossRef]
- Gopal, S.; Irodi, S.; Mehta, D.; Subramanya, S.; Govindaraju, V.K. Fracture resistance of endodontically treated roots restored with fiber posts using different resin cements an in-vitro study. J. Clin. Diagn Res. 2017, 11, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, R.; Lizio, A.; Cervino, G.; Nicita, F.; Puleio, F.; Ausiello, P.; Cicciù, M. The horizontal root fractures. Diagnosis, clinical management and three-year follow-up. Open Dent. J. 2018, 12, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Khasnis, S.A.; Kidiyoor, K.H.; Patil, A.B.; Kenganal, S.B. Vertical root fractures and their management. J. Conserv. Dent. 2014, 17, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Tamse, A.; Fuss, Z.; Lustig, J.; Kaplavi, J. An evaluation of endodontically treated vertically fractured teeth. J. Endod. 1999, 25, 506–508. [Google Scholar] [CrossRef]
- Barreto, M.S.; Moraes, R.D.A.; da Rosa, R.A.; Moreira, C.; Só, M.V.R.; Bier, C.A.S. Vertical Root Fractures and Dentin Defects: Effects of Root Canal Preparation, Filling, and Mechanical Cycling. J. Endod. 2012, 38, 1135–1139. [Google Scholar] [CrossRef]
- Shemesh, H.; Bier, C.A.S.; Wu, M.K.; Tanomaru-Filho, M.; Wesselink, P.R. The effects of canal preparation and filling on the incidence of dentinal defects. Int. Endod. J. 2009, 42, 1–3. [Google Scholar]
- Shemesh, H.; Wesselink, P.R.; Wu, M.-K. Incidence of dentinal defects after root canal filling procedures. Int. Endod. J. 2010, 43, 995–1000. [Google Scholar] [CrossRef]
- Kim, H.-C.; Lee, M.-H.; Yum, J.; Versluis, A.; Lee, C.-J.; Kim, B.-M. Potential Relationship between Design of Nickel-Titanium Rotary Instruments and Vertical Root Fracture. J. Endod. 2010, 36, 1195–1199. [Google Scholar] [CrossRef]
- Medha, A.; Patil, S.; Hoshing, U.; Bandekar, S. Evaluation of forces generated on three different rotary file systems in apical third of root canal using finite element analysis. J. Clin. Diagn. Res. 2014, 8, 243–246. [Google Scholar] [CrossRef]
- Versluis, A.; Messer, H.H.; Pintado, M.R. Changes in compaction stress distributions in roots resulting from canal preparation. Int. Endod. J. 2006, 39, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Adorno, C.G.; Yoshioka, T.; Suda, H. Crack Initiation on the Apical Root Surface Caused by Three Different Nickel-Titanium Rotary Files at Different Working Lengths. J. Endod. 2011, 37, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Llena-Puy, M.A.C.; Forner-Navarro, L.; Barbero-Navarro, I. Vertical root fracture in endodontically treated teeth: A review of 25 cases. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 92, 553–555. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Khademi, J.A. Case Studies in Modern Molar Endodontic Access and Directed Dentin Conservation. Dent. Clin. 2010, 54, 275–289. [Google Scholar] [CrossRef]
- Clark, D.; Khademi, J.; Herbranson, E. Fracture resistant endodontic and restorative preparations. Dent. Today 2013, 32, 120–123. [Google Scholar]
- Hulsmann, M.; Peters, O.A.; Dummer, P.M. Mechanical preparation of root canals: Shaping goals, techniques and means. Endod. Top. 2005, 10, 30–76. [Google Scholar] [CrossRef]
- Khademi, A.; Yazdizadeh, M.; Feizianfard, M. Determination of the Minimum Instrumentation Size for Penetration of Irrigants to the Apical Third of Root Canal Systems. J. Endod. 2006, 32, 417–420. [Google Scholar] [CrossRef]
- Harvey, T.E.; White, J.T.; Leeb, I.J. Lateral condensation stress in root canals. J. Endod. 1981, 7, 151–155. [Google Scholar] [CrossRef]
- Usman, N.; Baumgartner, J.C.; Marshall, J.G. Influence of Instrument Size on Root Canal Debridement. J. Endod. 2004, 30, 110–112. [Google Scholar] [CrossRef]
- Rundquist, B.D.; Versluis, A. How does canal taper affect root stresses? Int. Endod. J. 2006, 39, 226–237. [Google Scholar] [CrossRef]
- Meister, F., Jr.; Lommel, T.J.; Gerstein, H. Diagnosis and possible causes of vertical root fractures. Oral Surg. Oral Med. Oral Pathol. 1980, 49, 243–253. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Fiore, P.M.; Genov, K.A.; Komaroff, E.; Li, Y.; Lin, L. Nickel–titanium rotary instrument fracture: A clinical practice assessment. Int. Endod. J. 2006, 39, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.E.; Torabinejad, M. Principles and Practice of Endodontics, 3rd ed.; WB Saunders: Philadelphia, PA, USA, 1996; p. 210. [Google Scholar]
- Kim, H.C.; Kim, H.J.; Lee, C.J.; Kim, B.M.; Park, J.K.; Versluis, A. Mechanical response of nickel-titanium instruments with different cross-sectional designs during shaping of simulated curved canals. Int. Endod. J. 2009, 42, 593–602. [Google Scholar] [CrossRef]
- Zhang, E.-W.; Cheung, G.S.; Zheng, Y.-F. Influence of Cross-sectional Design and Dimension on Mechanical Behavior of Nickel-Titanium Instruments under Torsion and Bending: A Numerical Analysis. J. Endod. 2010, 36, 1394–1398. [Google Scholar] [CrossRef] [PubMed]
- Faggion, C.M. Guidelines for Reporting Pre-clinical In Vitro Studies on Dental Materials. J. Évid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef]
- Eliasz, W.; Czarnecka, B.; Surdacka, A. The Influence of Root Canal Preparation with ProTaper Next, WaveOne Gold, and Twisted Files on Dentine Crack Formation. Machines 2021, 9, 332. [Google Scholar] [CrossRef]
- Lin, G.S.S.; Singbal, K.P.; Noorani, T.Y.; Penukonda, R. Vertical root fracture resistance and dentinal crack formation of root canal-treated teeth instrumented with different nickel–titanium rotary systems: An in-vitro study. Odontology 2021, 110, 106–112. [Google Scholar] [CrossRef]
- Kılıç, Y.; Karataşlıoğlu, E.; Kaval, M.E. The Effect of Root Canal Preparation Size and Taper of Middle Mesial Canals on Fracture Resistance of the Mandibular Molar Teeth: An In Vitro Study. J. Endod. 2021, 47, 1467–1471. [Google Scholar] [CrossRef]
- Yıldız, E.D.; Fidan, M.E.; Sakarya, R.E.; Dinçer, B. The effect of taper and apical preparation size on fracture resistance of roots. Aust. Endod. J. 2020, 47, 67–72. [Google Scholar] [CrossRef]
- Tian, S.Y.; Bai, W.; Jiang, W.R.; Liang, Y.H. Fracture Resistance of Roots in Mandibular Premolars Following Root Canal Instrumentation of Different Sizes. Chin. J. Dent. Res. 2019, 22, 197–202. [Google Scholar] [PubMed]
- Munari, L.S.; Bowles, W.R.; Fok, A.S. Relationship between Canal Enlargement and Fracture Load of Root Dentin Sections. Dent. Mater. 2019, 35, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, Ç.; Keriş, E.Y.; Yaman, S.D.; Ocak, M.; Geneci, F.; Çelik, H.H. Evaluation of XP-endo Shaper, Reciproc Blue, and ProTaper Universal NiTi Systems on Dentinal Microcrack Formation Using Micro-Computed Tomography. J. Endod. 2019, 45, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Krikeli, E.; Mikrogeorgis, G.; Lyroudia, K. In Vitro Comparative Study of the Influence of Instrument Taper on the Fracture Resistance of Endodontically Treated Teeth: An Integrative Approach–based Analysis. J. Endod. 2018, 44, 1407–1411. [Google Scholar] [CrossRef]
- Zogheib, C.; Sfeir, G.; Plotino, G.; De Deus, G.; Daou, M.; Khalil, I. Impact of minimal root canal taper on the fracture resistance of endodontically treated bicuspids. J. Int. Soc. Prev. Community Dent. 2018, 8, 179–183. [Google Scholar] [CrossRef]
- Sabeti, M.; Kazem, M.; Dianat, O.; Bahrololumi, N.; Beglou, A.; Rahimipour, K.; Dehnavi, F. Impact of Access Cavity Design and Root Canal Taper on Fracture Resistance of Endodontically Treated Teeth: An Ex Vivo Investigation. J. Endod. 2018, 44, 1402–1406. [Google Scholar] [CrossRef]
- Örs, S.A.; Serper, A. Influence of nickel-titanium rotary systems with varying tapers on the biomechanical behaviour of maxillary first premolars under occlusal forces: A finite element analysis study. Int. Endod. J. 2017, 51, 529–540. [Google Scholar] [CrossRef]
- Kfir, A.; Elkes, D.; Pawar, A.; Weissman, A.; Tsesis, I. Incidence of microcracks in maxillary first premolars after instrumentation with three different mechanized file systems: A comparative ex vivo study. Clin. Oral Investig. 2016, 21, 405–411. [Google Scholar] [CrossRef]
- Ceyhanli, K.T.; Erdilek, N.; Tatar, I.; Celik, D. Comparison of ProTaper, RaCe and Safesider instruments in the induction of dentinal microcracks: A micro-CT study. Int. Endod. J. 2016, 49, 684–689. [Google Scholar] [CrossRef]
- Li, S.-H.; Lu, Y.; Song, D.; Zhou, X.; Zheng, Q.-H.; Gao, Y.; Huang, D.-M. Occurrence of Dentinal Microcracks in Severely Curved Root Canals with ProTaper Universal, WaveOne, and ProTaper Next File Systems. J. Endod. 2015, 41, 1875–1879. [Google Scholar] [CrossRef]
- Karataş, E.; Gündüz, H.A.; Kırıcı, D.Ö.; Arslan, H.; Topçu, M.Ç.; Yeter, K.Y. Dentinal crack formation during root canal preparations by the twisted file adaptive, ProTaper Next, ProTaper Universal, and WaveOne instruments. J. Endod. 2015, 41, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, E.; Aslan, M.A.; Akkoçan, O. Comparison of the Resistance of Teeth Instrumented with Different Nickel-Titanium Systems to Vertical Root Fracture: An In Vitro Study. J. Endod. 2015, 41, 1682–1685. [Google Scholar] [CrossRef] [PubMed]
- Jamleh, A.; Komabayashi, T.; Ebihara, A.; Nassar, M.; Watanabe, S.; Yoshioka, T.; Miyara, K.; Suda, H. Root surface strain during canal shaping and its influence on apical microcrack development: A preliminary investigation. Int. Endod. J. 2014, 48, 1103–1111. [Google Scholar] [CrossRef]
- Capar, I.D.; Altunsoy, M.; Arslan, H.; Ertas, H.; Aydinbelge, H.A. Fracture Strength of Roots Instrumented with Self-Adjusting File and the ProTaper Rotary Systems. J. Endod. 2014, 40, 551–554. [Google Scholar] [CrossRef]
- Arias, A.; Lee, Y.H.; Peters, C.I.; Gluskin, A.H.; Peters, O. Comparison of 2 Canal Preparation Techniques in the Induction of Microcracks: A Pilot Study with Cadaver Mandibles. J. Endod. 2014, 40, 982–985. [Google Scholar] [CrossRef] [PubMed]
- Hin, E.S.; Wu, M.-K.; Wesselink, P.R.; Shemesh, H. Effects of Self-Adjusting File, Mtwo, and ProTaper on the Root Canal Wall. J. Endod. 2012, 39, 262–264. [Google Scholar] [CrossRef]
- Lertchirakarn, V.; Palamara, J.E.; Messer, H.H. Patterns of Vertical Root Fracture: Factors Affecting Stress Distribution in the Root Canal. J. Endod. 2003, 29, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Lo Giudice, R.; Famà, F. Health Care and Health Service Digital Revolution. Int. J. Environ. Res. Public Health 2020, 17, 4913. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.-M.; Zheng, Y.; Peng, B.; Haapasalo, M. Current Challenges and Concepts of the Thermomechanical Treatment of Nickel-Titanium Instruments. J. Endod. 2013, 39, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Eltit, F.; Ebacher, V.; Wang, R. Inelastic deformation and microcracking process in human dentin. J. Struct. Biol. 2013, 183, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, W.; Liang, Y. Evaluation of apical root defects during canal instrumentation with two different nickel-titanium (NiTi) systems by optical coherence tomography (OCT) scan. J. Dent. Sci. 2022, 17, 763–770. [Google Scholar] [CrossRef]
- Wilcox, L.R.; Roskelley, C.; Sutton, T. The relationship of root canal enlargement to finger-spreader induced vertical root fracture. J. Endod. 1997, 23, 533–534. [Google Scholar] [CrossRef]
- Versiani, M.A.; Cavalcante, D.M.; Belladonna, F.G.; Silva, E.J.N.L.; Souza, E.M.; De-Deus, G. A critical analysis of research methods and experimental models to study dentinal microcracks. Int. Endod. J. 2021, 55, 178–226. [Google Scholar] [CrossRef]
- Çiçek, E.; Koçak, M.M.; Sağlam, B.C.; Koçak, S. Evaluation of microcrack formation in root canals after instrumentation with different NiTi rotary file systems: A scanning electron microscopy study. Scanning 2014, 37, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Paolino, D.S.; Chiandussi, G.; Alovisi, M.; Cantatore, G.; Castellucci, A.; Pasqualini, D. Root Canal Anatomy Preservation of WaveOne Reciprocating Files with or without Glide Path. J. Endod. 2011, 38, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berutti, E.; Chiandussi, G.; Paolino, D.S.; Scotti, N.; Cantatore, G.; Castellucci, A.; Pasqualini, D. Canal Shaping with WaveOne Primary Reciprocating Files and ProTaper System: A Comparative Study. J. Endod. 2012, 38, 505–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, E.; Elbay, M.; Yiğit, D. Evaluation of the Self-Adjusting File system (SAF) for the instrumentation of primary molar root canals: A micro-computed tomographic study. Eur. J. Paediatr. Dent. 2017, 18, 105–110. [Google Scholar] [CrossRef]
- Metzger, Z. The self-adjusting file (SAF) system: An evidence-based update. J. Conserv. Dent. 2014, 17, 401–419. [Google Scholar] [CrossRef] [Green Version]
- Metzgerm, Z.; Teperovich, E.; Zary, R.; Cohen, R.; Hof, R. The selfadjusting file (SAF). Part 1: Respecting the root canal anatomy-a new concept ofendodontic files and its implementation. J. Endod. 2010, 36, 679–690. [Google Scholar] [CrossRef]
- Hof, R.; Perevalov, V.; Eltanani, M.; Zary, R.; Metzger, Z. The Self-adjusting File (SAF). Part 2: Mechanical Analysis. J. Endod. 2010, 36, 691–696. [Google Scholar] [CrossRef]
- Kaya, S.; Yiǧit-Özer, S.; Adigüzel, O. Evaluation of radicular dentin erosion and smear layer removal capacity of Self-Adjusting File using different concentrations of sodium hypochlorite as an initial irrigant. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Roda-Casanova, V.; Pérez-González, A.; Zubizarreta-Macho, A.; Faus-Matoses, V. Influence of Cross-Section and Pitch on the Mechanical Response of NiTi Endodontic Files under Bending and Torsional Conditions—A Finite Element Analysis. J. Clin. Med. 2022, 11, 2642. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.O.; Cheung, G.S.P.; Lee, J.M.; Kim, B.M.; Hur, B.; Kim, H.C. Stress distribution of three NiTi rotary files under bending and torsional conditions using a mathematic analysis. Int. Endod. J. 2008, 42, 14–21. [Google Scholar] [CrossRef]
- Galal, M.; Ismail, A.G.; Omar, N.; Zaazou, M.; Nassar, M.A. Influence of Thermomechanical Treatment on the Mechanical Behavior of Protaper Gold versus Protaper Universal (A Finite Element Study). Open Access Maced. J. Med. Sci. 2019, 7, 2157–2161. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.; Chandra, A.; Khangwal, M.; Goel, A.; Shakya, V.K. Stereomicroscopic evaluation of microcrack formation in dentin by protaper next, revo s, and waveone gold file system. Contemp. Clin. Dent. 2021, 12, 439–443. [Google Scholar] [CrossRef]
Author | Object of Research | Taper | Study Design and Evaluation Methods | Result |
---|---|---|---|---|
Eliasz W. 2022 [28] | 80 single-rooted teeth | Co, 25/0.06 PTN 25/0.08 WO 35/0.04 TF | Randomized controlled trial Observation with microscope at 25× magnification | No significant differences were observed among experimental groups. |
Lin G. S. S. 2022 [29] | 80 mandibular premolars | Co, 25/0.04 TP, 25/0.04 HyF, 25/0.06 Tg, 25/0.06 Zf. | Randomized controlled trial Fracture load | The fracture strengths of the 25/0.04 group were found to be significantly higher than in the 25/0.06 group. |
Kılıç Y. 2021 [30] | 55 mandibular molars | Co, 25/0.04 VDWr, 25/0.06 VDWr, 30/0.04 VDWr, 30/0.06 VDWr. | Randomized controlled trial Fracture load | The fracture strengths of the 25/0.04 group were found to be significantly higher than in the other groups. |
Doganay Y. 2020 [31] | 84 mandibular incisors | Co, 25/0.04 K3, 25/0.06 K3, 25/0.08 K3, 30/0.04 K3, 30/0.06 K3, 30/0.08 K3. | Non-randomized controlled trial Fracture load | Significant differences were found between 25/0.04 and 25/0.08; 30/0.04 and 30/0.08; and 25/0.08 and 30/0.04. |
Tian S. Y. 2019 [32] | 100 human permanent mandibular premolars with a straight single canal | Co, Hand-file: 40/0.05, 45/0.05, 50/0.05, 55/0.05, 60/0.05, 40/0.10, 40/0.15, 45/0.10, 45/0.15. | Randomized controlled trial Fracture load | No significant differences in the fracture modes were detected among the 10 groups. |
Munari L. S. 2019 [33] | 36 single-rooted lower premolars | 35/0.02 K3, 35/0.04 K3, 35/0.06 K3 | Analytics cohort study Finite element analysis | Both analytical and FE solutions showed a positive linear relationship between the fracture load and the enlarged root-canal diameter. |
Aksoy C. 2019 [34] | 30 mandibular first and second molars | 25/0 XP, 25/0.08 RB, 25/0.08 PTU | Non-randomized controlled trial Micro-CT | No new dentinal microcracks were observed in the XP and RB groups. The PTU system significantly increased the percentage rate of microcracks, compared with the preoperative specimens. |
Krikeli E. 2018 [35] | 58 maxillary canines | Co, 40/0.02 Hf, 40/0.04 MT, 40/0.06 MT | Randomized controlled trial Fracture load | Only 40/0.06 MT Vs Co was statistically significant. |
Zogheib C. 2018 [36] | 60 maxillary premolars | 30/0.04 IR, 30/0.06 IR | Non-randomized controlled trial Fracture load | No statistically significant difference was registered. |
Sabeti M. 2018 [37] | 30 distobuccal roots of maxillary molars | 25/0.04 TF, 25.0.06 TF, 25/0.08 TF | Randomized controlled trial Fracture load | The 0.04 taper and 0.06 taper groups did not significantly differ, but both groups differed significantly from the 0.08 taper group. |
Askerbeyli S. 2017 [38] | 1 two-rooted premolar and 3 single-rooted premolars | Co, 30/0.04 HS, 30/0.06 RS, 30/0.09 PTU | Analytics cohort study Finite element analysis | The intact models exhibited the lowest stress values, followed by the 30/0.04 model, while 30/0.09 exhibited the highest stress values. |
Kfir A. 2016 [39] | 80 extracted maxillary first premolars two-rooted | Co, 30/0.09 PTU, 25/0.08 WO, SAF | Randomized controlled trial Observation with a microscope at 20× magnification | The differences between both the PTU treated and the WO groups, compared to the SAF treated group, were significant. No difference was seen between 30/0.09 and 25/0.08. |
Ceyhanli. K. T. 2016 [40] | 30 mandibular molars | 30/0.09 PTU, 30/0.04 IR, 30/0.04 SS | Non-randomized controlled trial Micro-CT | The PTU system generated more post-instrumentation dentinal microcracks. |
Li S. 2015 [41] | 60 molars | Co, 25/0.08 PTU, 25/0.08 WO, 25/0.06 PTN | Randomized controlled trial Observation with a stereomicroscope at 60× magnification | The 25/0.06 PTN induced fewer dentinal microcracks during the root canal procedures in severely curved root canals, compared with the PTU and WO systems. |
Karatas E. 2015 [42] | 75 central incisors | Control, 25/0.08 PTU, 25/0.06 PTN, 25/0.08 WO, 25/0.06 TFA | Non-randomized controlled trial Observation with a stereomicroscope at 25× magnification | The PTN and TFA systems produced significantly fewer cracks than the PTU and WO systems. |
Cicek, E. 2015 [43] | 72 mandibular first premolar | 40/0.06 PTU, 40/0.06 PTN, 40/0.08 WO, 40/0.04 TF, 40/0.06 MT, 40/0.06 RS | Non-randomized controlled trial Fracture load | The PTN group was the most resistant to fracture, while the MT group was the least resistant. Resistances between the WO Group and RS Group were similar. |
Jamleh A. 2014 [44] | 25 mandibular premolars | Co, 40/0.06 PTU, 40/0.08 WO | Randomized controlled trial Micro-CT | Fewer microcracks were found after instrumentation with a 40/0.08 WO. |
Capar I. D. 2014 [45] | 50 mandibular premolars | Co, 40/0.06 PTU, SAF | Randomized controlled trial Fracture load | The differences were not statistically significant. |
Arias A. 2014 [46] | 18 lower incisors | Co, 25/0.04 manual PF, 25/0.08 WO | Randomized controlled trial Photo observation at 25× and 40× magnification | There were no significant differences in the incidence of microcracks between all groups. |
Hin E. A. 2013 [47] | 100 mandibular premolars | Co, 40/0.05 Hf, 40/0.06 PTU, 40/0.04 MT, SAF | Non-randomized controlled trial Photo observation at 12× magnification | The Hf group did not show any dentinal cracks. The PTU and MT caused more cracks than Hf, but SAF did not. |
Item | Eliasz W. 2022 [28] | Lin G. S. S. 2022 [29] | Kılıç Y. 2021 [30] | Doganay Y. 2020 [31] | Tian S. Y. [32] | Munari L. S. [33] | Aksoy C. [34] | Krikeli E. [35] | Zogheib C. [36] | Sabeti M. [37] | Askerbeyli S. [38] | Kfir A. [39] | Ceyhanli. K. T. [40] | Li S. 2015 [41] | Karatas E. [42] | Cicek, E. [43] | Jamleh A. [44] | Capar I. D. [45] | Arias A. [46] | Hin E. A. [47] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Abstract | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
2a Background and objectives | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
2b Background and objectives | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
3 Intervention | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
4 Outcomes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
5 Sample size | No | No | No | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No |
6 Randomization: Sequence generation | Yes | Yes | Yes | No | Yes | No | No | Yes | No | Yes | no | Yes | No | Yes | No | No | Yes | Yes | Yes | No |
7 Allocation concealment mechanism | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No |
8 Implementation | No | No | No | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No | Yes | No | No |
9 Blinding | No | No | No | No | No | No | No | No | No | No | No | Yes | No | No | No | No | No | No | Yes | No |
10 Statistical methods | Yes | Yes | Yes | Yes | Yes | No | No | Yes | No | No | No | No | No | Yes | Yes | Yes | Yes | Yes | Yes | No |
11 Results, outcomes, and estimation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | No | Yes | Yes |
12 Discussion Limitations | Yes | Yes | Yes | Yes | No | No | Yes | No | No | No | No | No | Yes | yes | No | No | Yes | Yes | Yes | No |
13 Other information Funding | Yes | No | No | No | No | No | No | No | Yes | No | No | No | No | No | No | No | No | No | No | No |
14 Protocol | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puleio, F.; Lo Giudice, G.; Militi, A.; Bellezza, U.; Lo Giudice, R. Does Low-Taper Root Canal Shaping Decrease the Risk of Root Fracture? A Systematic Review. Dent. J. 2022, 10, 94. https://doi.org/10.3390/dj10060094
Puleio F, Lo Giudice G, Militi A, Bellezza U, Lo Giudice R. Does Low-Taper Root Canal Shaping Decrease the Risk of Root Fracture? A Systematic Review. Dentistry Journal. 2022; 10(6):94. https://doi.org/10.3390/dj10060094
Chicago/Turabian StylePuleio, Francesco, Giuseppe Lo Giudice, Angela Militi, Ugo Bellezza, and Roberto Lo Giudice. 2022. "Does Low-Taper Root Canal Shaping Decrease the Risk of Root Fracture? A Systematic Review" Dentistry Journal 10, no. 6: 94. https://doi.org/10.3390/dj10060094
APA StylePuleio, F., Lo Giudice, G., Militi, A., Bellezza, U., & Lo Giudice, R. (2022). Does Low-Taper Root Canal Shaping Decrease the Risk of Root Fracture? A Systematic Review. Dentistry Journal, 10(6), 94. https://doi.org/10.3390/dj10060094