A Scoping Review about the Characteristics and Success-Failure Rates of Temporary Anchorage Devices in Orthodontics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question
- Population: People receiving orthodontic treatment.
- Concept: Temporary Anchorage Devices (TADs).
- Context: Characteristics and success-failure rates.
2.2. Search Process for Identifying Relevant Studies
2.3. Study Screening and Selection
2.4. Collating, Summarizing, and Reporting Findings
3. Results
3.1. Study Selection
3.2. Publication Characteristics
3.3. Sample Characteristics
3.4. TADs and Biomechanical Characteristics
3.5. Success and Failure Rates
4. Discussion
5. Conclusions
- There is a great deal of scientific evidence about temporary anchorage devices in orthodontics, as shown by the one hundred and three publications analyzed in this study from 95 authors, 47 journals, and 42 countries.
- These publications reported on the results of clinical trials, descriptive studies, and retrospective studies. Most of the research was conducted among females, adolescents, and the adult population, who needed TADs principally in the maxilla and in an interradicular location between the second premolar and first molar, and attended university hospitals for en-masse retraction of anterior teeth.
- AbsoAnchor, made by Dentos Inc., Daegu, Korea, was the most commonly used brand of TADs. The most common characteristics of the devices and biomechanics were a diameter and length of 1.6 mm and 8 mm, a self-drilled system, a closed technique for placement, immediate loading, and forces that ranged between 40 and 800 g.
- Although the success rates were high, reaching levels above 90%, complications can cause failures such as inflammation, pain, and fracture of the device. The most successful type of TADs was the mini-plate, while the least successful was the mini-implant.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthélemi, S.; Desoutter, A.; Souaré, F.; Cuisinier, F. Effectiveness of anchorage with temporary anchorage devices during anterior maxillary tooth retraction: A randomized clinical trial. Korean J. Orthod. 2019, 49, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Garfinkle, J.S.; Cunningham, L.L., Jr.; Beeman, C.S.; Kluemper, G.T.; Hicks, E.P.; Kim, M.O. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, S.; Zhang, X.Y.; Jiang, R.P.; Liu, Y.; Shi, F.H.; Xu, T.M. A new method to evaluate the positional stability of a self-drilling miniscrew. Orthod. Craniofac. Res. 2015, 18, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Berens, A.; Wiechmann, D.; Dempf, R. Mini- and micro-screws for temporary skeletal anchorage in orthodontic therapy. J. Orofac. Orthop. 2006, 67, 450–458. [Google Scholar] [CrossRef]
- Uribe, F.; Mehr, R.; Mathur, A.; Janakiraman, N.; Allareddy, V. Failure rates of mini-implants placed in the infrazygomatic region. Prog. Orthod. 2015, 16, 31. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.C.; da Veiga, A.M.A.; Masterson, D.; Mattos, C.T.; Nojima, L.I.; Nojima, M.C.G.; Maia, L.C. How do geometry-related parameters influence the clinical performance of orthodontic mini-implants? A systematic review and meta-analysis. Int. J. Oral. Maxillofac. Surg. 2017, 46, 1539–1551. [Google Scholar] [CrossRef]
- Ramírez-Ossa, D.M.; Escobar-Correa, N.; Ramírez-Bustamante, M.A.; Agudelo-Suárez, A.A. An Umbrella Review of the Effectiveness of Temporary Anchorage Devices and the Factors That Contribute to Their Success or Failure. J. Evid. Based Dent. Pract. 2020, 20, 101402. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.; Khalil, H. Chapter 11: Scoping Reviews (2020 version). In JBI Manual for Evidence Synthesis; Aromataris, E.Z.M., Ed.; Joanna Briggs Institute: Adelaide, Australia, 2020. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Blaya, M.G.; Blaya, D.S.; Guimarães, M.B.; Hirakata, L.M.; Marquezan, M. Patient’s perception on mini-screws used for molar distalization. Rev. Odonto. Ciênc. 2010, 25, 266–270. [Google Scholar]
- Basha, A.G.; Shantaraj, R.; Mogegowda, S.B. Comparative study between conventional en-masse retraction (sliding mechanics) and en-masse retraction using orthodontic micro implant. Implant. Dent. 2010, 19, 128–136. [Google Scholar] [CrossRef]
- Bayat, E.; Bauss, O. Effect of smoking on the failure rates of orthodontic miniscrews. J. Orofac. Orthop. 2010, 71, 117–124. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, S.M.; Choi, Y.S.; Kook, Y.A.; Chung, K.R.; Huang, J.C. Cone-beam computed tomography evaluation of mini-implants after placement: Is root proximity a major risk factor for failure? Am. J. Orthod. Dentofac. Orthop. 2010, 138, 264–276. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yang, S.M.; Kim, S.; Lee, J.Y.; Kim, K.E.; Gianelly, A.A.; Kyung, S.H. Midpalatal miniscrews for orthodontic anchorage: Factors affecting clinical success. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 66–72. [Google Scholar] [CrossRef]
- Lee, S.J.; Ahn, S.J.; Lee, J.W.; Kim, S.H.; Kim, T.W. Survival analysis of orthodontic mini-implants. Am. J. Orthod Dentofac. Orthop 2010, 137, 194–199. [Google Scholar] [CrossRef]
- Miyazawa, K.; Kawaguchi, M.; Tabuchi, M.; Goto, S. Accurate pre-surgical determination for self-drilling miniscrew implant placement using surgical guides and cone-beam computed tomography. Eur. J. Orthod. 2010, 32, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.H.; Park, H.K.; Nam, J.S.; Im, J.S.; Baek, S.H. Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 51–57. [Google Scholar] [CrossRef]
- Motoyoshi, M.; Uemura, M.; Ono, A.; Okazaki, K.; Shigeeda, T.; Shimizu, N. Factors affecting the long-term stability of orthodontic mini-implants. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 588.e1–588.e5. [Google Scholar] [CrossRef]
- Nalçaci, R.; Biçakçi, A.A.; Ozan, F. Noncompliance screw supported maxillary molar distalization in a parallel manner. Kjod 2010, 40, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.; Kumar, P.S.; Upadhyay, M.; Naik, V. A clinical evaluation of orthodontic mini-implants as intraoral anchorage for the intrusion of maxillary anterior teeth. World J. Orthod. 2010, 11, 346–351. [Google Scholar]
- Takaki, T.; Tamura, N.; Yamamoto, M.; Takano, N.; Shibahara, T.; Yasumura, T.; Nishii, Y.; Sueishi, K. Clinical study of temporary anchorage devices for orthodontic treatment—Stability of micro/mini-screws and mini-plates: Experience with 455 cases. Bull. Tokyo Dent. Coll. 2010, 51, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Aboul-Ela, S.M.; El-Beialy, A.R.; El-Sayed, K.M.; Selim, E.M.; El-Mangoury, N.H.; Mostafa, Y.A. Miniscrew implant-supported maxillary canine retraction with and without corticotomy-facilitated orthodontics. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 252–259. [Google Scholar] [CrossRef]
- Alves, M., Jr.; Baratieri, C.; Nojima, L.I. Assessment of mini-implant displacement using cone beam computed tomography. Clin. Oral. Implant. Res. 2011, 22, 1151–1156. [Google Scholar] [CrossRef]
- Aydoğdu, E.; Özsoy, Ö.P. Effects of mandibular incisor intrusion obtained using a conventional utility arch vs. bone anchorage. Angle Orthod. 2011, 81, 767–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buschang, P.H.; Carrillo, R.; Rossouw, P.E. Orthopedic correction of growing hyperdivergent, retrognathic patients with miniscrew implants. J. Oral Maxillofac. Surg. 2011, 69, 754–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.Y.; Kim, Y.H. Comparison of Movement of the Upper Dentition According to Anchorage Method: Orthodontic Mini-Implant versus Conventional Anchorage Reinforcement in Class I Malocclusion. ISRN Dent. 2011, 2011, 321206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.J.; Park, Y.C.; Hwang, C.J.; Kim, Y.J.; Choi, T.H.; Yoo, H.M.; Kyung, S.H. Displacement pattern of the maxillary arch depending on miniscrew position in sliding mechanics. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 224–232. [Google Scholar] [CrossRef]
- Lehnen, S.; McDonald, F.; Bourauel, C.; Jäger, A.; Baxmann, M. Expectations, acceptance and preferences of patients in treatment with orthodontic mini-implants: Part II: Implant removal. J. Orofac. Orthop. 2011, 72, 214–222. [Google Scholar] [CrossRef]
- Lim, H.J.; Choi, Y.J.; Evans, C.A.; Hwang, H.S. Predictors of initial stability of orthodontic miniscrew implants. Eur. J. Orthod. 2011, 33, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Manni, A.; Cozzani, M.; Tamborrino, F.; De Rinaldis, S.; Menini, A. Factors influencing the stability of miniscrews. A retrospective study on 300 miniscrews. Eur. J. Orthod. 2011, 33, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.H.; Park, H.S.; Kwon, T.G. Treatment effects of microimplant-aided sliding mechanics on distal retraction of posterior teeth. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 470–481. [Google Scholar] [CrossRef]
- Sharma, P.; Valiathan, A.; Sivakumar, A. Success rate of microimplants in a university orthodontic clinic. ISRN Surg. 2011, 2011, 982671. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, E.Y.; Suzuki, B. Placement and removal torque values of orthodontic miniscrew implants. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 669–678. [Google Scholar] [CrossRef]
- Türköz, C.; Ataç, M.S.; Tuncer, C.; Balos Tuncer, B.; Kaan, E. The effect of drill-free and drilling methods on the stability of mini-implants under early orthodontic loading in adolescent patients. Eur. J. Orthod. 2011, 33, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Al Maaitah, E.F.; Safi, A.A.; Abdelhafez, R.S. Alveolar bone density changes around miniscrews: A prospective clinical study. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 758–767. [Google Scholar] [CrossRef]
- Ge, Y.S.; Liu, J.; Chen, L.; Han, J.L.; Guo, X. Dentofacial effects of two facemask therapies for maxillary protraction. Angle Orthod. 2012, 82, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Kotrashetti, S.M.; Naik, V. A comparitive clinical study between self tapping and drill free screws as a source of rigid orthodontic anchorage. J. Maxillofac. Oral. Surg. 2012, 11, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Jung, B.A.; Kunkel, M.; Göllner, P.; Liechti, T.; Wagner, W.; Wehrbein, H. Prognostic parameters contributing to palatal implant failures: A long-term survival analysis of 239 patients. Clin. Oral Implant. Res. 2012, 23, 746–750. [Google Scholar] [CrossRef]
- Manni, A.; Pasini, M.; Mauro, C. Comparison between Herbst appliances with or without miniscrew anchorage. Dent. Res. J. 2012, 9, S216–S221. [Google Scholar] [CrossRef]
- Min, K.I.; Kim, S.C.; Kang, K.H.; Cho, J.H.; Lee, E.H.; Chang, N.Y.; Chae, J.M. Root proximity and cortical bone thickness effects on the success rate of orthodontic micro-implants using cone beam computed tomography. Angle Orthod. 2012, 82, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Samrit, V.; Kharbanda, O.P.; Duggal, R.; Seith, A.; Malhotra, V. Bone density and miniscrew stability in orthodontic patients. Aust. Orthod. J. 2012, 28, 204–212. [Google Scholar]
- Senışık, N.E.; Türkkahraman, H. Treatment effects of intrusion arches and mini-implant systems in deepbite patients. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 723–733. [Google Scholar] [CrossRef]
- Topouzelis, N.; Tsaousoglou, P. Clinical factors correlated with the success rate of miniscrews in orthodontic treatment. Int. J. Oral. Sci. 2012, 4, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, M.; Yadav, S.; Nagaraj, K.; Uribe, F.; Nanda, R. Mini-implants vs fixed functional appliances for treatment of young adult Class II female patients: A prospective clinical trial. Angle Orthod. 2012, 82, 294–303. [Google Scholar] [CrossRef]
- Ziebura, T.; Flieger, S.; Wiechmann, D. Mini-implants in the palatal slope—A retrospective analysis of implant survival and tissue reaction. Head Face Med. 2012, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davoody, A.R.; Posada, L.; Utreja, A.; Janakiraman, N.; Neace, W.P.; Uribe, F.; Nanda, R. A prospective comparative study between differential moments and miniscrews in anchorage control. Eur. J. Orthod. 2013, 35, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janson, G.; Gigliotti, M.P.; Estelita, S.; Chiqueto, K. Influence of miniscrew dental root proximity on its degree of late stability. Int. J. Oral. Maxillofac. Surg. 2013, 42, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, T.E.; Kim, J.W.; Choi, T.H.; Park, Y.C.; Lee, K.J. Distalization pattern of the maxillary arch depending on the number of orthodontic miniscrews. Angle Orthod. 2013, 83, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.R.; Kim, S.C.; Kang, K.H.; Cho, J.H.; Lee, E.H.; Chang, N.Y.; Chae, J.M. Placement angle effects on the success rate of orthodontic microimplants and other factors with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 173–181. [Google Scholar] [CrossRef]
- Nienkemper, M.; Wilmes, B.; Pauls, A.; Drescher, D. Maxillary protraction using a hybrid hyrax-facemask combination. Prog. Orthod. 2013, 14, 5. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, A.; Motoyoshi, M.; Uchida, Y.; Shimizu, N. Root proximity and inclination of orthodontic mini-implants after placement: Cone-beam computed tomography evaluation. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 50–56. [Google Scholar] [CrossRef]
- Suzuki, M.; Deguchi, T.; Watanabe, H.; Seiryu, M.; Iikubo, M.; Sasano, T.; Fujiyama, K.; Takano-Yamamoto, T. Evaluation of optimal length and insertion torque for miniscrews. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 251–259. [Google Scholar] [CrossRef]
- Watanabe, H.; Deguchi, T.; Hasegawa, M.; Ito, M.; Kim, S.; Takano-Yamamoto, T. Orthodontic miniscrew failure rate and root proximity, insertion angle, bone contact length, and bone density. Orthod. Craniofac. Res. 2013, 16, 44–55. [Google Scholar] [CrossRef]
- El-Dawlatly, M.M.; Abou-El-Ezz, A.M.; El-Sharaby, F.A.; Mostafa, Y.A. Zygomatic mini-implant for Class II correction in growing patients. J. Orofac. Orthop. 2014, 75, 213–225. [Google Scholar] [CrossRef]
- Lai, T.-T.; Chen, M.-H. Factors affecting the cl.linical success of orthodontic anchorage: Experience with 266 temporary anchorage devices. J. Dent. Sci. 2014, 9, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Motoyoshi, M.; Uchida, Y.; Matsuoka, M.; Inaba, M.; Iwai, H.; Karasawa, Y.; Shimizu, N. Assessment of damping capacity as an index of root proximity in self-drilling orthodontic mini-implants. Clin. Oral Investig. 2014, 18, 321–326. [Google Scholar] [CrossRef]
- Sandler, J.; Murray, A.; Thiruvenkatachari, B.; Gutierrez, R.; Speight, P.; O’Brien, K. Effectiveness of 3 methods of anchorage reinforcement for maximum anchorage in adolescents: A 3-arm multicenter randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 10–20. [Google Scholar] [CrossRef]
- Shigeeda, T. Root proximity and stability of orthodontic anchor screws. J. Oral Sci. 2014, 56, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Son, S.; Motoyoshi, M.; Uchida, Y.; Shimizu, N. Comparative study of the primary stability of self-drilling and self-tapping orthodontic miniscrews. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 480–485. [Google Scholar] [CrossRef]
- Yoo, S.H.; Park, Y.C.; Hwang, C.J.; Kim, J.Y.; Choi, E.H.; Cha, J.Y. A comparison of tapered and cylindrical miniscrew stability. Eur. J. Orthod. 2014, 36, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Victor, D.; Prabhakar, R.; Karthikeyan, M.K.; Saravanan, R.; Vanathi, P.; Vikram, N.R.; Reddy, P.A.; Sudeepthi, M. Effectiveness of mini implants in three-dimensional control during retraction—A clinical study. J. Clin. Diagn. Res. 2014, 8, 227–232. [Google Scholar] [CrossRef]
- Bremen, J.; Ludwig, B.; Ruf, S. Anchorage loss due to Herbst mechanics-preventable through miniscrews? Eur. J. Orthod. 2015, 37, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Iwai, H.; Motoyoshi, M.; Uchida, Y.; Matsuoka, M.; Shimizu, N. Effects of tooth root contact on the stability of orthodontic anchor screws in the maxilla: Comparison between self-drilling and self-tapping methods. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 483–491. [Google Scholar] [CrossRef]
- Jeong, J.W.; Kim, J.W.; Lee, N.K.; Kim, Y.K.; Lee, J.H.; Kim, T.W. Analysis of time to failure of orthodontic mini-implants after insertion or loading. J. Korean Assoc. Oral Maxillofac. Surg. 2015, 41, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Miresmaeili, A.; Sajedi, A.; Moghimbeigi, A.; Farhadian, N. Three-dimensional analysis of the distal movement of maxillary 1st molars in patients fitted with mini-implant-aided trans-palatal arches. Korean J. Orthod. 2015, 45, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Motoyoshi, M.; Sanuki-Suzuki, R.; Uchida, Y.; Saiki, A.; Shimizu, N. Maxillary sinus perforation by orthodontic anchor screws. J. Oral Sci. 2015, 57, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Sarul, M.; Minch, L.; Park, H.S.; Antoszewska-Smith, J. Effect of the length of orthodontic mini-screw implants on their long-term stability: A prospective study. Angle Orthod. 2015, 85, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Yi Lin, S.; Mimi, Y.; Ming Tak, C.; Kelvin Weng Chiong, F.; Hung Chew, W. A study of success rate of miniscrew implants as temporary anchorage devices in singapore. Int. J. Dent. 2015, 2015, 294670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ağlarcı, C.; Esenlik, E.; Fındık, Y. Comparison of short-term effects between face mask and skeletal anchorage therapy with intermaxillary elastics in patients with maxillary retrognathia. Eur. J. Orthod. 2016, 38, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Aras, I.; Tuncer, A.V. Comparison of anterior and posterior mini-implant-assisted maxillary incisor intrusion: Root resorption and treatment efficiency. Angle Orthod. 2016, 86, 746–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, G.S.; Görgülü, S.; Dindaroğlu, F. Three-dimensional analysis of tooth movements after palatal miniscrew-supported molar distalization. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Elkordy, S.A.; Abouelezz, A.M.; Fayed, M.M.; Attia, K.H.; Ishaq, R.A.; Mostafa, Y.A. Three-dimensional effects of the mini-implant-anchored Forsus Fatigue Resistant Device: A randomized controlled trial. Angle Orthod. 2016, 86, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.I.; Singaraju, G.S.; Mandava, P.; Reddy, G.V.; Nettam, V.; Bhavikati, V.N. Comparison of Anchorage Pattern under Two Types of Orthodontic Mini- Implant Loading During Retraction in Type A Anchorage Cases. J. Clin. Diagn. Res. 2016, 10, Zc98–Zc102. [Google Scholar] [CrossRef]
- Lee, M.Y.; Park, J.H.; Kim, S.C.; Kang, K.H.; Cho, J.H.; Cho, J.W.; Chang, N.Y.; Chae, J.M. Bone density effects on the success rate of orthodontic microimplants evaluated with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 217–224. [Google Scholar] [CrossRef]
- Motoyoshi, M.; Uchida, Y.; Inaba, M.; Ejima, K.; Honda, K.; Shimizu, N. Are assessments of damping capacity and placement torque useful in estimating root proximity of orthodontic anchor screws? Am. J. Orthod. Dentofac. Orthop. 2016, 150, 124–129. [Google Scholar] [CrossRef]
- Canan, S.; Şenışık, N.E. Comparison of the treatment effects of different rapid maxillary expansion devices on the maxilla and the mandible. Part 1: Evaluation of dentoalveolar changes. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 1125–1138. [Google Scholar] [CrossRef]
- Chopra, S.S.; Mukherjee, M.; Mitra, R.; Kochar, G.D.; Kadu, A. Comparative evaluation of anchorage reinforcement between orthodontic implants and conventional anchorage in orthodontic management of bimaxillary dentoalveolar protrusion. Med. J. Armed Forces India 2017, 73, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Eissa, O.; El-Shennawy, M.; Gaballah, S.; El-Meehy, G.; El Bialy, T. Treatment outcomes of Class II malocclusion cases treated with miniscrew-anchored Forsus Fatigue Resistant Device: A randomized controlled trial. Angle Orthod. 2017, 87, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Tunçer, N.I.; Arman-Özçirpici, A.; Oduncuoglu, B.F.; Göçmen, J.S.; Kantarci, A. Efficiency of piezosurgery technique in miniscrew supported en-masse retraction: A single-centre, randomized controlled trial. Eur. J. Orthod. 2017, 39, 586–594. [Google Scholar] [CrossRef]
- Watanabe, T.; Miyazawa, K.; Fujiwara, T.; Kawaguchi, M.; Tabuchi, M.; Goto, S. Insertion torque and Periotest values are important factors predicting outcome after orthodontic miniscrew placement. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 483–488. [Google Scholar] [CrossRef]
- Ashith, M.; Shetty, B.; Shekatkar, Y.; Mangal, U.; Mithun, K. Assessment of immediate loading with mini-implant anchorage in critical anchorage cases between stainless steel versus titanium miniscrew implants: A controlled clinical trial. Biomed. Pharmacol. J. 2018, 11, 971–977. [Google Scholar] [CrossRef]
- Ganzer, N.; Feldmann, I.; Petrén, S.; Bondemark, L. A cost-effectiveness analysis of anchorage reinforcement with miniscrews and molar blocks in adolescents: A randomized controlled trial. Eur. J. Orthod. 2019, 41, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganzer, N.; Feldmann, I.; Bondemark, L. Anchorage reinforcement with miniscrews and molar blocks in adolescents: A randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 758–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martires, S.; Kamat, N.V.; Dessai, S.R. A CBCT evaluation of molar uprighting by conventional versus microimplant-assisted methods: An in-vivo study. Dent. Press J. Orthod. 2018, 23, 35.e31–35.e39. [Google Scholar] [CrossRef] [PubMed]
- Abohabib, A.M.; Fayed, M.M.; Labib, A.H. ffects of low-intensity laser therapy on the stability of orthodontic mini-implants: A randomised controlled clinical trial. J. Orthod. 2018, 45, 149–156. [Google Scholar] [CrossRef]
- Bollero, P.; Di Fazio, V.; Pavoni, C.; Cordaro, M.; Cozza, P.; Lione, R. Titanium alloy vs. stainless steel miniscrews: An in vivo split-mouth study. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2191–2198. [Google Scholar] [CrossRef]
- Łyczek, J.; Kawala, B.; Antoszewska-Smith, J. Influence of antibiotic prophylaxis on the stability of orthodontic microimplants: A pilot randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 621–631. [Google Scholar] [CrossRef]
- Aly, S.A.; Alyan, D.; Fayed, M.S.; Alhammadi, M.S.; Mostafa, Y.A. Success rates and factors associated with failure of temporary anchorage devices: A prospective clinical trial. J. Investig. Clin. Dent. 2018, 9, e12331. [Google Scholar] [CrossRef]
- Uesugi, S.; Kokai, S.; Kanno, Z.; Ono, T. Stability of secondarily inserted orthodontic miniscrews after failure of the primary insertion for maxillary anchorage: Maxillary buccal area vs midpalatal suture area. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Van Hevele, J.; Nout, E.; Claeys, T.; Meyns, J.; Scheerlinck, J.; Politis, C. Bone-anchored maxillary protraction to correct a class III skeletal relationship: A multicenter retrospective analysis of 218 patients. J. Craniomaxillofac. Surg. 2018, 46, 1800–1806. [Google Scholar] [CrossRef]
- Gurdan, Z.; Szalma, J. Evaluation of the success and complication rates of self-drilling orthodontic mini-implants. Niger. J. Clin. Pract. 2018, 21, 546–552. [Google Scholar] [CrossRef]
- Jia, X.; Chen, X.; Huang, X. Influence of orthodo.ontic mini-implant penetration of the maxillary sinus in the infrazygomatic crest region. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 656–661. [Google Scholar] [CrossRef]
- Di Leonardo, B.; Ludwig, B.; Lisson, J.A.; Contardo, L.; Mura, R.; Hourfar, J. Insertion torque values and success rates for paramedian insertion of orthodontic mini-implants: A retrospective study. J. Orofac. Orthop. 2018, 79, 109–115. [Google Scholar] [CrossRef]
- Lam, R.; Goonewardene, M.S.; Allan, B.P.; Sugawara, J. Success rates of a skeletal anchorage system in orthodontics: A retrospective analysis. Angle Orthod. 2018, 88, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Azeem, M.; Haq, A.U.; Awaisi, Z.H.; Saleem, M.M.; Tahir, M.W.; Liaquat, A. Failure rates of miniscrews inserted in the maxillary tuberosity. Dent. Press J. Orthod. 2019, 24, 46–51. [Google Scholar] [CrossRef]
- Sabzijati, M.; Rahbar, M.; Shanei, F.; Salehi-Vaziri, A.; Ghaffari, H.A.; Abtahi, S.-A. Comparing the Clinical Success Rate of Self-Drilling and Self-Tapping Mini-screws in the Retraction of Maxillary Anterior Teeth. Pesqui Bras. Odontopediatria Clín. Integr. 2019, 4428. [Google Scholar] [CrossRef]
- De Souza, R.A.; Rino Neto, J.; de Paiva, J.B. Maxillary protraction with rapid maxillary expansion and facemask versus skeletal anchorage with mini-implants in class III patients: A non-randomized clinical trial. Prog. Orthod. 2019, 20, 35. [Google Scholar] [CrossRef] [Green Version]
- Calik Koseler, B.; Yilanci, H.; Ramoglu, S.I. Does audiovisual information affect anxiety and perceived pain levels in miniscrew application?—A within-person randomized controlled trial. Prog. Orthod. 2019, 20, 29. [Google Scholar] [CrossRef]
- Marañón-Vásquez, G.A.; Lagravère, M.O.; Borsatto, M.C.; de Souza, S.S.; Watanabe, P.C.A.; Matsumoto, M.A.N.; Saraiva, M.; Romano, F.L. Effect of photobiomodulation on the stability and displacement of orthodontic mini-implants submitted to immediate and delayed loading: A clinical study. Lasers Med. Sci. 2019, 34, 1705–1715. [Google Scholar] [CrossRef]
- Elkordy, S.A.; Abouelezz, A.M.; Fayed, M.M.S.; Aboulfotouh, M.H.; Mostafa, Y.A. Evaluation of the miniplate-anchored Forsus Fatigue Resistant Device in skeletal Class II growing subjects: A randomized controlled trial. Angle Orthod. 2019, 89, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Choi, S.H.; Choi, Y.J.; Park, Y.B.; Kim, K.M.; Yu, H.S. A prospective, split-mouth, clinical study of orthodontic titanium miniscrews with machined and acid-etched surfaces. Angle Orthod. 2019, 89, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Sivarajan, S.; Doss, J.G.; Papageorgiou, S.N.; Cobourne, M.T.; Wey, M.C. Mini-implant supported canine retraction with micro-osteoperforation: A split-mouth randomized clinical trial. Angle Orthod. 2019, 89, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Haddad, R.; Saadeh, M. Distance to alveolar crestal bone: A critical factor in the success of orthodontic mini-implants. Prog. Orthod. 2019, 20, 19. [Google Scholar] [CrossRef]
- Azeem, M.; Saleem, M.M.; Liaquat, A.; Ul Haq, A.; Ul Hamid, W.; Masood, M. Failure rates of mini-implants inserted in the retromolar area. Int. Orthod. 2019, 17, 53–59. [Google Scholar] [CrossRef]
- Çubuk, S.; Kaya, B.; Şahinoğlu, Z.; Ateş, U.; Özçırpıcı, A.A.; Uçkan, S. Sagittal skeletal correction using symphyseal miniplate anchorage systems: Success rates and complications. J. Orofac. Orthop. 2019, 80, 9–16. [Google Scholar] [CrossRef]
- Ichinohe, M.; Motoyoshi, M.; Inaba, M.; Uchida, Y.; Kaneko, M.; Matsuike, R.; Shimizu, N. Risk factors for failure of orthodontic mini-screws placed in the median palate. J. Oral Sci. 2019, 61, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Flieger, R.; Gedrange, T.; Grzech-Leśniak, K.; Dominiak, M.; Matys, J. Low-Level Laser Therapy with a 635 nm Diode Laser Affects Orthodontic Mini-Implants Stability: A Randomized Clinical Split-Mouth Trial. J. Clin. Med. 2019, 9, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulduren, K.; Tumer, H.; Oz, U. Effects of micro-osteoperforations on intraoral miniscrew anchored maxillary molar distalization: A randomized clinical trial. J. Orofac. Orthop. 2020, 81, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Nienkemper, M.; Willmann, J.H.; Becker, K.; Drescher, D. RFA measurements of survival midpalatal orthodontic mini-implants in comparison to initial healing period. Prog. Orthod. 2020, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.C.; Tsai, C.C.; Cheng, J.H.; Chou, S.T.; Pan, C.Y.; Chen, P.H.; Chen, C.M. Recognizing the peak bone mass (age 30) as a cutoff point to achieve the success of orthodontic implants. Odontology 2020, 108, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Melsen, B. Mini-implants: Where are we? J. Clin. Orthod. 2005, 39, 539–547. [Google Scholar]
- Papadopoulos, M.A.; Tarawneh, F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: A comprehensive review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, e6–e15. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- De Clerck, H.J.; Cornelis, M.A.; Cevidanes, L.L.H.; Heymann, G.C.; Tulloch, C.J. Orthopedic traction of the maxilla with miniplates: A new perspective for treatment of midface deficiency. J. Oral Maxillofac. Surg. 2009, 67, 2123–2129. [Google Scholar] [CrossRef] [Green Version]
- Dalessandri, D.; Salgarello, S.; Dalessandri, M.; Lazzaroni, E.; Piancino, M.; Paganelli, C.; Maiorana, C.; Santoro, F. Determinants for success rates of temporary anchorage devices in orthodontics: A meta-analysis (n > 50). Eur. J. Orthod. 2014, 36, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.B.; Kusnoto, B.; Kim, E.J.; BeGole, E.A.; Hwang, H.S.; Lim, H.J. Prognostic factors associated with the success rates of posterior orthodontic miniscrew implants: A subgroup meta-analysis. Korean J. Orthod. 2016, 46, 111–126. [Google Scholar] [CrossRef]
- Alhammadi, M.S.; Halboub, E.; Fayed, M.S.; Labib, A.; El-Saaidi, C. Global distribution of malocclusion traits: A systematic review. Dent. Press J. Orthod. 2018, 23, 40.e1–40.e10. [Google Scholar] [CrossRef]
- Janson, G.; Barros, S.E.; de Freitas, M.R.; Henriques, J.F.; Pinzan, A. Class II treatment efficiency in maxillary premolar extraction and nonextraction protocols. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 490–498. [Google Scholar] [CrossRef]
- Pisek, P.; Manosudprasit, M.; Wangsrimongkol, T.; Keinprasit, C.; Wongpetch, R. Treatment of a severe Class II Division 1 malocclusion combined with surgical miniscrew anchorage. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 572–583. [Google Scholar] [CrossRef]
- Giudice, A.L.; Rustico, L.; Longo, M.; Oteri, G.; Papadopoulos, M.A.; Nucera, R. Complications reported with the use of orthodontic miniscrews: A systematic review. Korean J. Orthod. 2021, 51, 199–216. [Google Scholar] [CrossRef]
- Kuroda, S.; Tanaka, E. Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn. Dent. Sci. Rev. 2014, 50, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Leo, M.; Cerroni, L.; Pasquantonio, G.; Condò, S.G.; Condò, R. Temporary anchorage devices (TADs) in orthodontics: Review of the factors that influence the clinical success rate of the mini-implants. Clin. Ter. 2016, 167, e70–e77. [Google Scholar] [CrossRef]
Characteristics | Total (n) | % | ||
---|---|---|---|---|
First author | ||||
Motoyoshi M | 4 | 3.9 | ||
Azeem M | 2 | 1.9 | ||
Elkordy SA | 2 | 1.9 | ||
Ganzer N | 2 | 1.9 | ||
Manni A | 2 | 1.9 | ||
Nienkemper M | 2 | 1.9 | ||
Other authors | 89 | 86.4 | ||
Journal | ||||
American Journal of Orthodontics and Dentofacial Orthopedics | 26 | 25.2 | ||
The Angle Orthodontist | 13 | 12.6 | ||
European Journal of Orthodontics | 10 | 9.8 | ||
Journal of Orofacial Orthopedics | 6 | 5.8 | ||
Progress in Orthodontics | 6 | 5.8 | ||
Other Journals | 42 | 40.8 | ||
Year | ||||
2010–2012 | 38 | 36.9 | ||
2013–2015 | 23 | 22.3 | ||
2016–2018 | 26 | 25.3 | ||
2019–2020 | 16 | 15.5 | ||
Country | ||||
South Korea | 15 | 14.6 | ||
Japan | 14 | 13.6 | ||
Turkey | 11 | 10.7 | ||
India | 10 | 9.7 | ||
Other Asian countries | 15 | 14.6 | ||
Germany | 7 | 6.8 | ||
Egypt | 6 | 5.8 | ||
Brazil | 5 | 4.9 | ||
Other countries | 20 | 19.3 | ||
Study type | ||||
Interventional studies | 37 | 35.8 | ||
Clinical trials | 35 | 33.9 | ||
Non-randomized trials | 2 | 1.9 | ||
Observational studies | 66 | 64.1 | ||
Descriptive | 25 | 24.3 | ||
Retrospective | 23 | 22.3 | ||
Prospective | 11 | 10.7 | ||
Cohort | 4 | 3.9 | ||
Cross sectional | 3 | 2.9 | ||
Study type per year* | 2010–2015 | 2016–2020 | ||
Total (n) | % | Total (n) | % | |
Interventional studies | 13 | 12.6 | 24 | 23.3 |
Observational studies | 48 | 46.6 | 18 | 17.5 |
Characteristics | Total (n) | % |
---|---|---|
Sex * | ||
Female | 4115 | 84.4 |
Male | 758 | 15.6 |
Age | ||
Under 15 years | 19 | 18.4 |
15–20 years | 26 | 25.3 |
20–25 years | 35 | 34 |
Over 25 years | 19 | 18.4 |
Not reported | 4 | 3.9 |
Origin | ||
University hospital | 87 | 84.4 |
Private practice | 7 | 6.8 |
Not reported | 9 | 8.8 |
Intervention site | ||
Maxilla | 56 | 54.3 |
Mandible | 10 | 9.7 |
Maxilla and mandible | 35 | 33.9 |
Not reported | 2 | 2.1 |
Characteristic | Total (n) | % |
---|---|---|
Brand | ||
AbsoAnchor, Dentos Inc., Daegu, Korea | 20 | 19.4 |
ISA Orthodontic Implants, Biodent, Tokyo, Japan | 7 | 6.8 |
Other brands | 76 | 73.8 |
Device type * | ||
Mini-screws | 6565 | 49 |
Mini-implants | 4135 | 30.9 |
Micro-implants | 713 | 5.3 |
Micro-screws | 95 | 0.8 |
Mini-plates | 1877 | 14 |
Diameter | ||
1.6 mm | 26 | 25.2 |
2 mm | 17 | 16.5 |
Other diameters | 60 | 58.3 |
Length | ||
8 mm | 60 | 58.3 |
10 mm | 18 | 17.4 |
Other lengths | 25 | 24.3 |
System type | ||
Self-drilled | 59 | 57.2 |
Self-tapped | 44 | 42.8 |
Surgical technique | ||
Closed technique | 80 | 77.7 |
Open technique | 7 | 6.8 |
Both techniques | 2 | 1.9 |
Not reported | 14 | 13.6 |
Placement site | ||
Interradicular | 50 | 48.6 |
Palatal | 9 | 8.7 |
Infracygomatic crest | 7 | 6.8 |
Other sites | 37 | 35.9 |
Loading protocol | ||
Immediate | 37 | 35.9 |
Postponed | 31 | 30.1 |
Both protocols | 7 | 6.8 |
Not reported | 28 | 27.2 |
Force | ||
MS, MI, MCI, MCS * 40–250 g | 68 | 66.0 |
MP * 300–800 g | ||
Not reported | 35 | 34.0 |
Orthodontic movements type | ||
En-masse retraction of anterior teeth | 39 | 37.8 |
Molar distalization | 18 | 17.5 |
Other movements | 46 | 44.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-Bedoya, D.; Villegas-Giraldo, G.; Agudelo-Suárez, A.A.; Ramírez-Ossa, D.M. A Scoping Review about the Characteristics and Success-Failure Rates of Temporary Anchorage Devices in Orthodontics. Dent. J. 2022, 10, 78. https://doi.org/10.3390/dj10050078
Jaramillo-Bedoya D, Villegas-Giraldo G, Agudelo-Suárez AA, Ramírez-Ossa DM. A Scoping Review about the Characteristics and Success-Failure Rates of Temporary Anchorage Devices in Orthodontics. Dentistry Journal. 2022; 10(5):78. https://doi.org/10.3390/dj10050078
Chicago/Turabian StyleJaramillo-Bedoya, Daniel, Gustavo Villegas-Giraldo, Andrés A. Agudelo-Suárez, and Diana Milena Ramírez-Ossa. 2022. "A Scoping Review about the Characteristics and Success-Failure Rates of Temporary Anchorage Devices in Orthodontics" Dentistry Journal 10, no. 5: 78. https://doi.org/10.3390/dj10050078
APA StyleJaramillo-Bedoya, D., Villegas-Giraldo, G., Agudelo-Suárez, A. A., & Ramírez-Ossa, D. M. (2022). A Scoping Review about the Characteristics and Success-Failure Rates of Temporary Anchorage Devices in Orthodontics. Dentistry Journal, 10(5), 78. https://doi.org/10.3390/dj10050078