Update on Dental Luting Materials
Abstract
:1. Introduction
2. Historical Development of Common Luting Cements
3. Classification of the Luting Materials
4. Properties and Clinical Indication of Luting Materials
4.1. Zinc Oxide Eugenol and Non-Eugenol Cements
4.2. Zinc Phosphate
4.3. Zinc Polycarboxylate
4.4. Glass Ionomer Cement
4.4.1. Conventional Glass Ionomer Cement
4.4.2. Resin-Modified Glass Ionomer Cement
4.4.3. Hybrid Calcium Aluminate/Glass Ionomer Cement
4.5. Resin Cements
4.5.1. Conventional Resin Cement
4.5.2. Self-Adhesive Resin Cements
5. New Development of Luting Cements
5.1. Modifications on Currently Available Luting Cements
5.1.1. Modifications on Glass Ionomer Cement
5.1.2. Modifications on Resin Cement
5.1.3. Restorative Composite Resin as an Alternative Luting Material
5.2. Development of Novel Luting Materials—Castor Oil Polyurethane Cement
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Driscoll, C.F.; Freilich, M.A.; Guckes, A.D.; Knoernschild, K.L.; Mcgarry, T.J.; Goldstein, G.; Goodacre, C.; Guckes, A.; Mor, S.; Rosenstiel, S.; et al. The glossary of prosthodontic terms: Ninth edition. J. Prosthet. Dent. 2017, 117, e1–e105. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.E.; Lott, J. A clinically focused discussion of luting materials. Aust. Dent. J. 2011, 56 (Suppl. 1), 67–76. [Google Scholar] [CrossRef] [PubMed]
- Segarra, M.; Segarra, A. The evolution of cements for indirect restorations from luting to bonding. In A Practical Clinical Guide to Resin Cements; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–7. [Google Scholar]
- Wingo, K. A review of dental cements. J. Vet. Dent. 2018, 35, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.E. Dental cements for definitive luting: A review and practical clinical considerations. Dent. Clin. N. Am. 2007, 51, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.L.; Powers, J.M. Craig’s Restorative Dental Materials; Elsevier: St Louis, MO, USA, 2011. [Google Scholar]
- Lööf, J.; Svahn, F.; Jarmar, T.; Engqvist, H.; Pameijer, C.H. A comparative study of the bioactivity of three materials for dental applications. Dent. Mater. 2008, 24, 653–659. [Google Scholar] [CrossRef]
- Pameijer, C.H. A review of luting agents. Int. J. Dent. 2012, 2012, 752861. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.P.; Morgano, S.M.; Luke, A.C.; Ehrenberg, D.; Weiner, S. Retentive strength and marginal discrepancies of a ceramic-reinforced calcium phosphate luting agent: An in vitro pilot study. J. Prosthet. Dent. 2018, 120, 771–779. [Google Scholar] [CrossRef]
- Craig, R.G. Restorative Dental Materials, 8th ed.; Mosby: St. Louis, MO, USA, 1989. [Google Scholar]
- Wassell, R.W.; St. George, G.; Ingledew, R.P.; Steele, J.G. Crowns and other extra-coronal restorations: Provisional restorations. Br. Dent. J. 2002, 192, 619–630. [Google Scholar] [CrossRef]
- Rosenstiel, S.F.; Land, M.F.; Crispin, B.J. Dental luting agents: A review of the current literature. J. Prosthet. Dent. 1998, 80, 280–301. [Google Scholar] [CrossRef]
- Stephen, F.R.; Martin, F.L.; Junhei, F. Contemporary Fixed Prosthodontics—E-Book, 4th ed.; Mosby: St. Louis, MO, USA, 2006. [Google Scholar]
- Sakaguchi, R.L.; Ferracane, J.L.; Powers, J.M. Craig’s Restorative Dental Materials, 14th ed.; Elsevier: St. Louis, MO, USA, 2019. [Google Scholar]
- Ribeiro, J.C.; Coelho, P.G.; Janal, M.N.; Silva, N.R.; Monteiro, A.J.; Fernandes, C.A. The influence of temporary cements on dental adhesive systems for luting cementation. J. Dent. 2011, 39, 255–262. [Google Scholar] [CrossRef]
- Sabouhi, M.; Nosouhian, S.; Davoudi, A.; Nourbakhshian, F.; Badrian, H.; Nabe, F.N. The effect of eugenol-free temporary cement’s remnants on retention of full metal crowns: Comparative study. J. Contemp. Dent. Pract. 2013, 14, 473–477. [Google Scholar] [CrossRef]
- Kanakuri, K.; Kawamoto, Y.; Matsumura, H. Influence of temporary cement remnant and surface cleaning method on bond strength to dentin of a composite luting system. J. Oral Sci. 2005, 47, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, K.; Moynihan, M.; Liu, M.; Kim, S. Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg. Oral Med. Oral Pathol. 1992, 73, 729–737. [Google Scholar] [CrossRef]
- Kwon, J.S.; Illeperuma, R.P.; Kim, J.; Kim, K.M.; Kim, K.N. Cytotoxicity evaluation of zinc oxide-eugenol and non-eugenol cements using different fibroblast cell lines. Acta Odontol. Scand. 2014, 72, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, S.; Lööf, J.; Pameijer, C.H.; Boston, D.; Galbraith, C.; Hermansson, L. Physical properties and comparative strength of a bioactive luting cement. Compend. Contin. Educ. Dent. 2013, 34, 8–14. [Google Scholar]
- Li a, Z.C.; White, S.N. Mechanical properties of dental luting cements. J. Prosthet. Dent. 1999, 81, 597–609. [Google Scholar] [CrossRef]
- Saskalauskaite, E.; Tam, L.E.; McComb, D. Flexural strength, elastic modulus, and pH profile of self-etch resin luting cements. J. Prosthodont. 2008, 17, 262–268. [Google Scholar] [CrossRef]
- Prylinska-Czyzewska, A.; Piotrowski, P.; Prylinski, M.; Dorocka-Bobkowska, B. Various cements and their effects on bond strength of zirconia ceramic to enamel and dentin. Int. J. Prosthodont. 2015, 28, 279–281. [Google Scholar] [CrossRef]
- Nanavati, K.; Katge, F.; Chimata, V.K.; Pradhan, D.; Kamble, A.; Patil, D. Comparative evaluation of shear bond strength of bioactive restorative material, zirconia reinforced glass ionomer cement and conventional glass ionomer cement to the dentinal surface of primary molars: An in vitro study. J. Dent. (Shiraz) 2021, 22, 260–266. [Google Scholar] [CrossRef]
- Ebadian, B.; Fathi, A.; Savoj, M. In Vitro evaluation of the effect of different luting cements and tooth preparation angle on the microleakage of zirconia crowns. Int. J. Dent. 2021, 2021, 8461579. [Google Scholar] [CrossRef]
- Pameijer, C.H.; Zmener, O.; Alvarez Serrano, S.; Garcia-Godoy, F. Sealing properties of a calcium aluminate luting agent. Am. J. Dent. 2010, 23, 121–124. [Google Scholar]
- Al-Saleh, S.; Aboghosh, T.W.; Hazazi, M.S.; Binsaeed, K.A.; Almuhaisen, A.M.; Tulbah, H.I.; Al-Qahtani, A.S.; Shabib, S.; Binhasan, M.; Vohra, F.; et al. Polymer-based bioactive luting agents for cementation of all-ceramic crowns: An SEM, EDX, microleakage, fracture strength, and color stability study. Polymers 2021, 13, 4227. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Altitinchi, A.; Ahmed, S.N.; Donovan, T.E. Physical properties, film thickness, and bond strengths of resin-modified glass ionomer cements according to their delivery method. J. Prosthodont. 2019, 28, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.P.; Priyadarshini, R.; Kumar, Y.M.; Priya, K.S.; Chunchuvyshnavi, C.; Yerrapragada, H. Effect of temperature on film thickness of two types of commonly used luting cements. J. Contemp. Dent. Pract. 2017, 18, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R. Film thickness and flow properties of resin-based cements at different temperatures. J. Dent. (Shiraz) 2013, 14, 57–63. [Google Scholar]
- Kious, A.R.; Roberts, H.W.; Brackett, W.W. Film thicknesses of recently introduced luting cements. J. Prosthet. Dent. 2009, 101, 189–192. [Google Scholar] [CrossRef]
- DeTrey Zinc Directions for Use. Available online: http://www.dentsply.de/bausteine.net/file/showfile.aspx?downdaid=7695&sp=D&domid=1042&fd=2 (accessed on 4 August 2022).
- Technical Product Profile Ketac Cem. Available online: https://multimedia.3m.com/mws/media/157473O/3m-ketac-cem-glass-ionomer-cement-technical-product-profile.pdf (accessed on 4 August 2022).
- GC Fuji Plus Instructions for Use. Available online: https://www.gcamerica.com/products/operatory/GC_Fuji_PLUS/GC_Fuji_PLUS_10IFU.pdf (accessed on 5 August 2022).
- Chiluka, L.; Shastry, Y.M.; Gupta, N.; Reddy, K.M.; Prashanth, N.B.; Sravanthi, K. An in vitro study to evaluate the effect of eugenol-free and eugenol-containing temporary cements on the bond strength of resin cement and considering time as a factor. J. Int. Soc. Prev. Community Dent. 2017, 7, 202–207. [Google Scholar] [CrossRef]
- Abo-Hamar, S.E.; Federlin, M.; Hiller, K.A.; Friedl, K.H.; Schmalz, G. Effect of temporary cements on the bond strength of ceramic luted to dentin. Dent. Mater. 2005, 21, 794–803. [Google Scholar] [CrossRef]
- Peutzfeldt, A.; Asmussen, E. Influence of eugenol-containing temporary cement on bonding of self-etching adhesives to dentin. J. Adhes. Dent. 2006, 8, 31–34. [Google Scholar]
- Ajaj, R.A.; Al-Mutairi, S.; Ghandoura, S. Effect of eugenol on bond strength of adhesive resin: A systematic review. OHDM 2014, 13, 950–958. [Google Scholar]
- Hotz, P.; Schlatter, D.; Lussi, A. The modification of the polymerization of composite materials by eugenol-containing temporary fillings. Schweiz. Monatsschr. Zahnmed. 1992, 102, 1461–1466. [Google Scholar] [PubMed]
- Horiuchi, S.; Asaoka, K.; Tanaka, E. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite. Bio-Med. Mater. Eng. 2009, 19, 121–131. [Google Scholar] [CrossRef]
- Wagh, A.S. Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications; Elsevier Science & Technology: Amsterdam, The Neterlands, 2004. [Google Scholar]
- Rosenstiel, S.F. Contemporary Fixed Prosthodontics, 2nd ed.; Mosby: St. Louis, MO, USA, 1994. [Google Scholar]
- Habib, B.; von Fraunhofer, J.A.; Driscoll, C.F. Comparison of two luting agents used for the retention of cast dowel and cores. J. Prosthodont. 2005, 14, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Sunico-Segarra, M.; Segarra, A. A Practical Clinical Guide to Resin Cements, 2015 ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Masaka, N.; Yoneda, S.; Masaka, K. An up to 43-year longitudinal study of fixed prosthetic restorations retained with 4-META/MMA-TBB resin cement or zinc phosphate cement. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Smith, D.C. A new dental cement. Br. Dent. J. 1968, 124, 381–384. [Google Scholar] [PubMed]
- Ruse, N.D. What is a “compomer”? J. Can. Dent. Assoc. 1999, 65, 500–504. [Google Scholar] [PubMed]
- Wilson, A.D.; Prosser, H.J.; Powis, D.M. Mechanism of adhesion of polyelectrolyte cements to hydroxyapatite. J. Dent. Res. 1983, 62, 590–592. [Google Scholar] [CrossRef]
- Emmott, R. Dental materials: Properties and manipulation, 9th edition. Br. Dent. J. 2011, 211, 48. [Google Scholar] [CrossRef]
- Wilson, A.D. Acid-Base Cements: Their Biomedical and Industrial Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Berg, J.H.; Croll, T.P. Glass ionomer restorative cement systems: An update. Pediatr. Dent. 2015, 37, 116–124. [Google Scholar]
- Frankenberger, R.; Sindel, J.; Krämer, N. Viscous glass-ionomer cements: A new alternative to amalgam in the primary dentition? Quintessence Int. 1997, 28, 667–676. [Google Scholar]
- Crisp, S.; Wilson, A.D. Reactions in glass ionomer cements: V. Effect of incorporating tartaric acid in the cement liquid. J. Dent. Res. 1976, 55, 1023–1031. [Google Scholar] [CrossRef]
- Park, E.Y.; Kang, S. Current aspects and prospects of glass ionomer cements for clinical dentistry. Yeungnam Univ. J. Med. 2020, 37, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Benelli, E.M.; Serra, M.C.; Rodrigues, A.L., Jr.; Cury, J.A. In situ anticariogenic potential of glass ionomer cement. Caries Res. 1993, 27, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Khoroushi, M.; Keshani, F. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer. Dent. Res. J. (Isfahan) 2013, 10, 411–420. [Google Scholar]
- Cho, S.Y.; Cheng, A.C. A review of glass ionomer restorations in the primary dentition. J. Can. Dent. Assoc. 1999, 65, 491–495. [Google Scholar] [PubMed]
- Bebermeyer, R.D.; Berg, J.H. Comparison of patient-perceived postcementation sensitivity with glass-ionomer and zinc phosphate cements. Quintessence Int. 1994, 25, 209–214. [Google Scholar] [PubMed]
- Johnson, G.H.; Powell, L.V.; DeRouen, T.A. Evaluation and control of post-cementation pulpal sensitivity: Zinc phosphate and glass ionomer luting cements. J. Am. Dent. Assoc. 1993, 124, 38–46. [Google Scholar] [CrossRef]
- Attar, N.; Tam, L.E.; McComb, D. Mechanical and physical properties of contemporary dental luting agents. J. Prosthet. Dent. 2003, 89, 127–134. [Google Scholar] [CrossRef]
- McLean, J.W.; Nicholson, J.W.; Wilson, A.D. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int. 1994, 25, 587–589. [Google Scholar]
- Coutinho, E.; Yoshida, Y.; Inoue, S.; Fukuda, R.; Snauwaert, J.; Nakayama, Y.; De Munck, J.; Lambrechts, P.; Suzuki, K.; Van Meerbeek, B. Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J. Dent. Res. 2007, 86, 656–661. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Douglas, W.H.; Cheng, Y.S. Fracture toughness of conventional, resin-modified glass-ionomer and composite luting cements. Dent. Mater. 1999, 15, 7–13. [Google Scholar] [CrossRef]
- Attar, N.; Turgut, M.D. Fluoride release and uptake capacities of fluoride-releasing restorative materials. Oper. Dent. 2003, 28, 395–402. [Google Scholar] [PubMed]
- De Araujo, F.B.; García-Godoy, F.; Cury, J.A.; Conceição, E.N. Fluoride release from fluoride-containing materials. Oper. Dent. 1996, 21, 185–190. [Google Scholar] [PubMed]
- Robertello, F.J.; Coffey, J.P.; Lynde, T.A.; King, P.; Robertello, F.J.; Coffey, J.P.; Lynde, T.A.; King, P. Fluoride release of glass ionomer–based luting cements in vitro. J. Prosthet. Dent. 1999, 82, 172–176. [Google Scholar] [CrossRef]
- Mitra, S.B. In vitro fluoride release from a light-cured glass-ionomer liner/base. J. Dent. Res. 1991, 70, 75–78. [Google Scholar] [CrossRef]
- Lan, W.H.; Lan, W.C.; Wang, T.M.; Lee, Y.L.; Tseng, W.Y.; Lin, C.P.; Jeng, J.H.; Chang, M.C. Cytotoxicity of conventional and modified glass ionomer cements. Oper. Dent. 2003, 28, 251–259. [Google Scholar]
- Selimović-Dragaš, M.; Huseinbegović, A.; Kobašlija, S.; Hatibović-Kofman, S. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements. Bosn. J. Basic Med. Sci. 2012, 12, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Kan, K.C.; Messer, L.B.; Messer, H.H. Variability in cytotoxicity and fluoride release of resin-modified glass-ionomer cements. J. Dent. Res. 1997, 76, 1502–1507. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Czarnecka, B. The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent. Mater. 2008, 24, 1702–1708. [Google Scholar] [CrossRef]
- Jefferies, S.R.; Appleby, D.; Boston, D.; Pameijer, C.H.; Lööf, J. Clinical performance of a bioactive dental luting cement—A prospective clinical pilot study. J. Clin. Dent. 2009, 20, 231–237. [Google Scholar]
- Jefferies, S.R.; Pameijer, C.H.; Appleby, D.C.; Boston, D.; Galbraith, C.; Lööf, J.; Glantz, P.O. Prospective observation of a new bioactive luting cement: 2-year follow-up. J. Prosthodont. 2012, 21, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Unosson, E.; Cai, Y.; Jiang, X.; Lööf, J.; Welch, K.; Engqvist, H. Antibacterial properties of dental luting agents: Potential to hinder the development of secondary caries. Int. J. Dent. 2012, 2012, 529495. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, S.R.; Pameijer, C.H.; Appleby, D.C.; Boston, D.; Lööf, J. A bioactive dental luting cement--its retentive properties and 3-year clinical findings. Compend. Contin. Educ. Dent. 2013, 34, 2–9. [Google Scholar] [PubMed]
- Jefferies, S.R.; Pameijer, C.H.; Appleby, D.; Boston, D.; Lööf, J.; Glantz, P.O. One year clinical performance and post-operative sensitivity of a bioactive dental luting cement--a prospective clinical study. Swed. Dent. J. 2009, 33, 193–199. [Google Scholar]
- Dursun, E.; Wiechmann, D.; Attal, J.P. The effect of moisture on the shear bond strength of gold alloy rods bonded to enamel with a self-adhesive and a hydrophobic resin cement. Eur. J. Orthod. 2010, 32, 264–267. [Google Scholar] [CrossRef] [Green Version]
- Scotti, N.; Cavalli, G.; Gagliani, M.; Breschi, L. New adhesives and bonding techniques. Why and when? Int. J. Esthet. Dent. 2017, 12, 524–535. [Google Scholar]
- Burgess, J.O.; Ghuman, T.; Cakir, D. Self-adhesive resin cements. J. Esthet. Restor. Dent. 2010, 22, 412–419. [Google Scholar] [CrossRef]
- Yousaf, A.; Aman, N.; Manzoor, M.A.; Shah, J.A.; Dilrasheed. Postoperative sensitivity of self etch versus total etch adhesive. J. Coll. Physicians Surg. Pak. 2014, 24, 383–386. [Google Scholar]
- Rosa, W.L.; Piva, E.; Silva, A.F. Bond strength of universal adhesives: A systematic review and meta-analysis. J. Dent. 2015, 43, 765–776. [Google Scholar] [CrossRef]
- Maravic, T.; Mazzoni, A.; Comba, A.; Scotti, N.; Checchi, V.; Breschi, L. How stable is dentin as a substrate for bonding? Curr. Oral Health Rep. 2017, 4, 248–257. [Google Scholar] [CrossRef]
- Muñoz, M.A.; Luque, I.; Hass, V.; Reis, A.; Loguercio, A.D.; Bombarda, N.H.C. Immediate bonding properties of universal adhesives to dentine. J. Dent. 2013, 41, 404–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, G.; Braga, R.R.; Cesar, P.F.; Lopes, G.C. Correlation between clinical performance and degree of conversion of resin cements: A literature review. J. Appl. Oral Sci. 2015, 23, 358–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svizero Nda, R.; Silva, M.S.; Alonso, R.C.; Rodrigues, F.P.; Hipólito, V.D.; Carvalho, R.M.; D’Alpino, P.H. Effects of curing protocols on fluid kinetics and hardness of resin cements. Dent. Mater. J. 2013, 32, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferracane, J.L.; Moser, J.B.; Greener, E.H. Ultraviolet light-induced yellowing of dental restorative resins. J. Prosthet. Dent. 1985, 54, 483–487. [Google Scholar] [CrossRef]
- Manso, A.P.; Carvalho, R.M. Dental cements for luting and bonding restorations: Self-adhesive resin cements. Dent. Clin. N. Am. 2017, 61, 821–834. [Google Scholar] [CrossRef]
- Kilinc, E.; Antonson, S.A.; Hardigan, P.C.; Kesercioglu, A. Resin cement color stability and its influence on the final shade of all-ceramics. J. Dent. 2011, 39 (Suppl. 1), e30–e36. [Google Scholar] [CrossRef]
- Pick, B.; Gonzaga, C.C.; Junior, W.S.; Kawano, Y.; Braga, R.R.; Cardoso, P.E. Influence of curing light attenuation caused by aesthetic indirect restorative materials on resin cement polymerization. Eur. J. Dent. 2010, 4, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Vrochari, A.D.; Eliades, G.; Hellwig, E.; Wrbas, K.T. Curing efficiency of four self-etching, self-adhesive resin cements. Dent. Mater. 2009, 25, 1104–1108. [Google Scholar] [CrossRef]
- Jang, Y.; Ferracane, J.L.; Pfeifer, C.S.; Park, J.W.; Shin, Y.; Roh, B.D. Effect of insufficient light exposure on polymerization kinetics of conventional and self-adhesive dual-cure resin cements. Oper. Dent. 2017, 42, e1–e9. [Google Scholar] [CrossRef] [Green Version]
- Alovisi, M.; Scotti, N.; Comba, A.; Manzon, E.; Farina, E.; Pasqualini, D.; Michelotto Tempesta, R.; Breschi, L.; Cadenaro, M. Influence of polymerization time on properties of dual-curing cements in combination with high translucency monolithic zirconia. J. Prosthodont. Res. 2018, 62, 468–472. [Google Scholar] [CrossRef]
- Serino, G.; Comba, A.; Baldi, A.; Carossa, M.; Baldissara, P.; Bignardi, C.; Audenino, A.; Torres, C.G.R.; Scotti, N. Could light-curing time, post-space region and cyclic fatigue affect the nanomechanical behavior of a dual-curing cement for fiber post luting? J. Mech. Behav. Biomed. Mater. 2022, 125, 104886. [Google Scholar] [CrossRef] [PubMed]
- Akgungor, G.; Akkayan, B.; Gaucher, H. Influence of ceramic thickness and polymerization mode of a resin luting agent on early bond strength and durability with a lithium disilicate-based ceramic system. J. Prosthet. Dent. 2005, 94, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.; Fareed, M.A.; Zafar, M.S.; Khurshid, Z.; Palma, P.J.; Kumar, N. Degradation and stabilization of resin-dentine interfaces in polymeric dental adhesives: An updated review. Coatings 2022, 12, 1094. [Google Scholar] [CrossRef]
- Roedel, L.; Bednarzig, V.; Belli, R.; Petschelt, A.; Lohbauer, U.; Zorzin, J. Self-adhesive resin cements: pH-neutralization, hydrophilicity, and hygroscopic expansion stress. Clin. Oral Investig. 2017, 21, 1735–1741. [Google Scholar] [CrossRef]
- Blatz, M.B.; Mante, F.K.; Saleh, N.; Atlas, A.M.; Mannan, S.; Ozer, F. Postoperative tooth sensitivity with a new self-adhesive resin cement--a randomized clinical trial. Clin. Oral Investig. 2013, 17, 793–798. [Google Scholar] [CrossRef]
- Shetty, R.M.; Bhat, S.; Mehta, D.; Srivatsa, G.; Shetty, Y.B. Comparative analysis of postcementation hypersensitivity with glass ionomer cement and a resin cement: An in vivo study. J. Contemp. Dent. Pract. 2012, 13, 327–331. [Google Scholar] [CrossRef]
- Miotti, L.L.; Follak, A.C.; Montagner, A.F.; Pozzobon, R.T.; da Silveira, B.L.; Susin, A.H. Is conventional resin cement adhesive performance to dentin better than self-adhesive? A systematic review and meta-analysis of laboratory studies. Oper. Dent. 2020, 45, 484–495. [Google Scholar] [CrossRef]
- Lührs, A.K.; Guhr, S.; Günay, H.; Geurtsen, W. Shear bond strength of self-adhesive resins compared to resin cements with etch and rinse adhesives to enamel and dentin in vitro. Clin. Oral Investig. 2010, 14, 193–199. [Google Scholar] [CrossRef]
- Taschner, M.; Krämer, N.; Lohbauer, U.; Pelka, M.; Breschi, L.; Petschelt, A.; Frankenberger, R. Leucite-reinforced glass ceramic inlays luted with self-adhesive resin cement: A 2-year in vivo study. Dent. Mater. 2012, 28, 535–540. [Google Scholar] [CrossRef]
- Eltoukhy, R.I.; Elkaffas, A.A.; Ali, A.I.; Mahmoud, S.H. Indirect resin composite inlays cemented with a self-adhesive, self-etch or a conventional resin cement luting agent: A 5 years prospective clinical evaluation. J. Dent. 2021, 112, 103740. [Google Scholar] [CrossRef] [PubMed]
- Brännström, M.; Johnson, G. Effects of various conditioners and cleaning agents on prepared dentin surfaces: A scanning electron microscopic investigation. J. Prosthet. Dent. 1974, 31, 422–430. [Google Scholar] [CrossRef]
- Scholz, K.J.; Bittner, A.; Cieplik, F.; Hiller, K.A.; Schmalz, G.; Buchalla, W.; Federlin, M. Micromorphology of the adhesive interface of self-adhesive resin cements to enamel and dentin. Materials 2021, 14, 492. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Khurshid, Z.; Zafar, M.S.; Khan, A.S.; Zohaib, S.; Martí, J.M.; Sauro, S.; Matinlinna, J.P.; Rehman, I.U. Modifications in glass ionomer cements: Nano-sized fllers and bioactive nanoceramics. Int. J. Mol. Sci. 2016, 17, 1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.H. Update on dental nanocomposites. J. Dent. Res. 2010, 89, 549–560. [Google Scholar] [CrossRef] [PubMed]
- De Caluwé, T.; Vercruysse, C.W.; Fraeyman, S.; Verbeeck, R.M. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties. Dent. Mater. 2014, 30, 1029–1038. [Google Scholar] [CrossRef]
- Hughes, J.M. Structure and chemistry of the apatites and other calcium orthophosphates By J. C. Elliot (The London Hospital Medical College). Elsevier: Amsterdam. 1994. xii + 389 pp. ISBN 0-444-81582-1. J. Am. Chem. Soc. 1996, 118, 3072. [Google Scholar] [CrossRef]
- Gjorgievska, E.; Van Tendeloo, G.; Nicholson, J.W.; Coleman, N.J.; Slipper, I.J.; Booth, S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc. Microanal. 2015, 21, 392–406. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Ansari, S.; Moshaverinia, M.; Roohpour, N.; Darr, J.A.; Rehman, I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008, 4, 432–440. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Ansari, S.; Movasaghi, Z.; Billington, R.W.; Darr, J.A.; Rehman, I.U. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent. Mater. 2008, 24, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Gupta, K.C.; Kang, I.K. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. Biomed. Res. Int. 2014, 2014, 308306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, M.E.; Arita, K.; Nishino, M. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 2003, 24, 3787–3794. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Mousavinasab, S.M.; Khoroushi, M.; Keshani, F.; Hashemi, S. Flexural strength and morphological characteristics of resin-modified glass-ionomer containing bioactive glass. J. Contemp. Dent. Pract. 2011, 12, 41–46. [Google Scholar] [CrossRef]
- De Caluwé, T.; Vercruysse, C.W.; Ladik, I.; Convents, R.; Declercq, H.; Martens, L.C.; Verbeeck, R.M. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility. Dent. Mater. 2017, 33, e186–e203. [Google Scholar] [CrossRef]
- Kim, H.J.; Bae, H.E.; Lee, J.E.; Park, I.S.; Kim, H.G.; Kwon, J.; Kim, D.S. Effects of bioactive glass incorporation into glass ionomer cement on demineralized dentin. Sci. Rep. 2021, 11, 7016. [Google Scholar] [CrossRef]
- Kim, D.A.; Lee, J.H.; Jun, S.K.; Kim, H.W.; Eltohamy, M.; Lee, H.H. Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties. Dent. Mater. 2017, 33, 805–817. [Google Scholar] [CrossRef]
- Ladha, K.; Verma, M. Conventional and contemporary luting cements: An overview. J. Indian Prosthodont. Soc. 2010, 10, 79–88. [Google Scholar] [CrossRef]
- Brouwer, F.; Askar, H.; Paris, S.; Schwendicke, F. Detecting secondary caries lesions: A systematic review and meta-analysis. J. Dent. Res. 2016, 95, 143–151. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yoshihara, K.; Nagaoka, N.; Van Meerbeek, B.; Yoshida, Y. Novel composite cement containing the anti-microbial compound CPC-Montmorillonite. Dent. Mater. 2022, 38, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhang, X.Y.; Zhao, J.X.; Zhou, C.J.; Wu, J.L. Development of novel self-adhesive resin cement with antibacterial and self-healing properties. Hua Xi Kou Qiang Yi Xue Za Zhi 2020, 38, 256–262. [Google Scholar] [CrossRef]
- Fan, C.; Chu, L.; Rawls, H.R.; Norling, B.K.; Cardenas, H.L.; Whang, K. Development of an antimicrobial resin—A pilot study. Dent. Mater. 2011, 27, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Beyth, N.; Yudovin-Farber, I.; Bahir, R.; Domb, A.J.; Weiss, E.I. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 2006, 27, 3995–4002. [Google Scholar] [CrossRef]
- Leung, D.; Spratt, D.A.; Pratten, J.; Gulabivala, K.; Mordan, N.J.; Young, A.M. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials 2005, 26, 7145–7153. [Google Scholar] [CrossRef]
- Samadzadeh, M.; Boura, S.H.; Peikari, M.; Kasiriha, S.; Ashrafi, A. A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat. 2010, 68, 159–164. [Google Scholar] [CrossRef]
- Kessler, M.; Sottos, N.R.; White, S. Self-healing structural composite materials. Compos. Part A Appl. Sci. Manufact. 2003, 34, 743–753. [Google Scholar] [CrossRef]
- Wu, J.; Weir, M.D.; Zhang, Q.; Zhou, C.; Melo, M.A.; Xu, H.H. Novel self-healing dental resin with microcapsules of polymerizable triethylene glycol dimethacrylate and N,N-dihydroxyethyl-p-toluidine. Dent. Mater. 2016, 32, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.Y.; Bagheri, R.; Kim, Y.K.; Kim, K.H.; Burrow, M.F. Cure mechanisms in materials for use in esthetic dentistry. J. Investig. Clin. Dent. 2012, 3, 3–16. [Google Scholar] [CrossRef]
- Aung, S.S.M.P.; Takagaki, T.; Ko, A.K.; Halabi, S.; Sato, T.; Ikeda, M.; Nikaido, T.; Burrow, M.F.; Tagami, J. Adhesion durability of dual-cure resin cements and acid–base resistant zone formation on human dentin. Dent. Mater. 2019, 35, 945–952. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Benino, Y.; Nakamura, A.; Hara, T.; Maruo, Y.; Yoshida, Y.; Van Meerbeek, B. Touch-cure polymerization at the composite cement-dentin interface. J. Dent. Res. 2021, 100, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Falacho, R.I.; Marques, J.A.; Palma, P.J.; Roseiro, L.; Caramelo, F.; Ramos, J.C.; Guerra, F.; Blatz, M.B. Luting indirect restorations with resin cements versus composite resins: Effects of preheating and ultrasound energy on film thickness. J. Esthet. Restor. Dent. 2022, 34, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Tomaselli, L.O.; Oliveira, D.; Favarão, J.; Silva, A.F.D.; Pires-de-Souza, F.C.P.; Geraldeli, S.; Sinhoreti, M.A.C. Influence of pre-heating regular resin composites and flowable composites on luting ceramic veneers with different thicknesses. Braz. Dent. J. 2019, 30, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcondes, R.L.; Lima, V.P.; Barbon, F.J.; Isolan, C.P.; Carvalho, M.A.; Salvador, M.V.; Lima, A.F.; Moraes, R.R. Viscosity and thermal kinetics of 10 preheated restorative resin composites and effect of ultrasound energy on film thickness. Dent. Mater. 2020, 36, 1356–1364. [Google Scholar] [CrossRef]
- ISO Standard, No. 4049:2019; Dentistry—Polymer-based restorative materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- May, L.G.; Kelly, J.R.; Bottino, M.A.; Hill, T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: Multi-physics FEA modeling and monotonic testing. Dent. Mater. 2012, 28, e99–e109. [Google Scholar] [CrossRef]
- Metalwala, Z.; Khoshroo, K.; Rasoulianboroujeni, M.; Tahriri, M.; Johnson, A.; Baeten, J.; Fahimipour, F.; Ibrahim, M.; Tayebi, L. Rheological properties of contemporary nanohybrid dental resin composites: The influence of preheating. Polym. Test. 2018, 72, 157–163. [Google Scholar] [CrossRef]
- Fróes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef]
- Pinelli, L.A.; Fais, L.M.; Ricci, W.A.; Reis, J.M. In Vitro comparisons of casting retention on implant abutments among commercially available and experimental castor oil-containing dental luting agents. J. Prosthet. Dent. 2013, 109, 319–324. [Google Scholar] [CrossRef]
- Carmello, J.C.; Fais, L.M.; Ribeiro, L.N.; Claro Neto, S.; Guaglianoni, D.G.; Pinelli, L.A. Diametral tensile strength and film thickness of an experimental dental luting agent derived from castor oil. J. Appl. Oral Sci. 2012, 20, 16–20. [Google Scholar] [CrossRef]
- Derceli Jdos, R.; Fais, L.M.; Pinelli, L.A. A castor oil-containing dental luting agent: Effects of cyclic loading and storage time on flexural strength. J. Appl. Oral Sci. 2014, 22, 496–501. [Google Scholar] [CrossRef]
Properties | Ideal Materials [12] | Zinc Oxide Eugenol | Zinc Oxide Non-Eugenol | Zinc Polycarboxylate |
---|---|---|---|---|
Bond strength | Low (for easy of removal) | Low | Low | Low |
Handling properties [13] | Good | Good | Good | Fair (cement is hard to mix) |
Ease of cleaning up [13,14] | High | High | High | Low (cement is hard to remove) |
Effect on permanent cementation [15,16,17] | No adverse effect | Interfere resin cement | No adverse effect | No adverse effect |
Pulpal effect [13,18,19] | Minimal pulpal irritation Sedative | Anti-inflammatory anaesthetic | Minimal pulpal irritation | Minimal pulpal irritation |
Properties | Ideal Material [4] | Zinc Phosphate | Zinc Poly-Carboxylate | GIC | RMGIC | Hybrid CaAl/GIC | Conventional Resin Cement | Self-Adhesive Resin Cement |
---|---|---|---|---|---|---|---|---|
Compressive strength (MPa) [20,21] | High | 48 (Flecks) | 63 (Durelon) | 105 (Ketac Cem) | 96.3 (RelyX Luting) | 160 (Ceramir C&B) | 209 (Scotchbond resin cement) | 157 (RelyX Unicem) |
Elastic modulus (GPa) [21,22] | 13.7 (dentine) | 19.8 (Flecks) | 16.1 (Durelon) | 19.5 (Ketac Cem) | 6.8 (Vitremer) | No data | 11.8 (Scotchbond resin cement) | 16.5 (RelyX Unicem) |
Shear bond strength 1 (MPa) [9,23,24] | High | 0.65 (N.A.) | 1.40 (N.A.) | 2.36 (GC Fuji 9) | 2.53 (GC Fuji Plus) | 5.79 2 (Ceramir C&B) | 6.99 (Panavia F 2.0) | 5.07 (Clearfil SA) |
Fluoride release | Yes | No | No | Yes | Yes | Yes | No | Yes |
Microleakage [12,25,26,27] | Minimal | High | High to very high | Low to very high | Very low | Low to high | Very low | Very low |
Film thickness (µm) [12,20,28,29,30,31] | Thin | <25 (N.A.) | <25 (N.A.) | 24.2 (GC luting) | 25.2 (GC Fuji Plus) | 16.4 (Ceramir C&B) | 24.3 (Panavia 21) | 16.0 (RelyX Unicem) |
Working time (min) [12,31,32,33,34] | Long | ~2:30 (DeTrey Zinc) | 2:00–2:30 (Poly-F Plus) | 3:10 (Ketac Cem) | 2:30 (GC Fuji Plus) | 2:00 (Ceramir C&B) | 4:00 (Panavia 21) | 2:30 (RelyX Unicem) |
Setting time (min) [20,31,32,33,34] | Short | 5:00–6:00 (DeTrey Zinc) | 5:00–7:00 (Poly-F Plus) | 7:00 (Ketac Cem) | 4:30 (GC Fuji Plus) | ~4:48 (Ceramir C&B) | 7:00 (Panavia 21) | 6:00 (RelyX Unicem) |
Removal of excess [9,12] | Easy | Easy | Medium | Medium | Medium | Easy | Difficult | Medium |
Water solubility [12] | Minimal | High | High | Low | Very low | Low | Very low | Very low |
Aesthetics | High | Low | Low | Low | Moderate | Low | Highest | High |
Color stability | High | Low | Low | Low | Moderate | Low | Highest | High |
Pulpal irritation [12] | Low | Moderate | Low | High | High | No data | High | High |
Luting Material | ZOE/ZONE | Zinc Phosphate | Zinc Poly-Carboxylate | GIC | RMGIC | Hybrid CaAl/GIC | Conventional Resin Cement | Self-Adhesive Resin Cement |
---|---|---|---|---|---|---|---|---|
Provisional restoration | ||||||||
Metal | ✓ | ✓ | ✓ | ✓ | ||||
Bis-acryl | ✓ | ✓ | ||||||
PEMA | ✓ | ✓ | ||||||
PMMA | ✓ | ✓ | ||||||
Single-unit definitive restoration | ||||||||
All-metal crown | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Metal-ceramic crown | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Zirconia/alumina crown | ✓ | ✓ | ✓ | ✓ | ||||
Lithium disilicate crown | ✓ | ✓ | ||||||
All metal inlay/onlay | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Ceramic inlay/onlay | ✓ | ✓ | ✓ | ✓ | ||||
Ceramic veneer | ✓ | |||||||
Composite veneer | ✓ | |||||||
Endodontic post | ||||||||
Cast metal post | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Prefabricated metal post | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Fiber post | ✓ | ✓ | ||||||
Multiple-unit definitive restoration/bridge | ||||||||
All-metal (conventional) | ✓ | ✓ | ||||||
Metal ceramic (conventional) | ✓ | ✓ | ✓ | ✓ | ||||
Metal ceramic | ✓ | ✓ | ✓ | |||||
Lithium disilicate | ✓ | |||||||
Zirconia | ✓ | ✓ | ||||||
Metal ceramic resin-bonded | ✓ | |||||||
Orthodontic appliances | ||||||||
Bands and brackets | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, G.K.-H.; Wong, A.W.-Y.; Chu, C.-H.; Yu, O.Y. Update on Dental Luting Materials. Dent. J. 2022, 10, 208. https://doi.org/10.3390/dj10110208
Leung GK-H, Wong AW-Y, Chu C-H, Yu OY. Update on Dental Luting Materials. Dentistry Journal. 2022; 10(11):208. https://doi.org/10.3390/dj10110208
Chicago/Turabian StyleLeung, Gary Kwun-Hong, Amy Wai-Yee Wong, Chun-Hung Chu, and Ollie Yiru Yu. 2022. "Update on Dental Luting Materials" Dentistry Journal 10, no. 11: 208. https://doi.org/10.3390/dj10110208
APA StyleLeung, G. K. -H., Wong, A. W. -Y., Chu, C. -H., & Yu, O. Y. (2022). Update on Dental Luting Materials. Dentistry Journal, 10(11), 208. https://doi.org/10.3390/dj10110208