Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
- For inner Mg–O bonds within [Mg(H2O)n]2+ (n = 1–6) clusters, the average intrinsic bond strength becomes weaker as the CN increases. As the size of the hydration shell becomes larger, the intrinsic Mg–O bond strength decreases alongside a weakening of the electrostatic interaction between the divalent Mg ion and O atoms by means of a decrease in the electron density allocated at the Mg–O bond critical point region caused by increased electron transfer between lp(O) and lp(Mg).
- The strength of HB interactions occurring between the first and second hydration shell within [Mg(H2O)n]2+–m(H2O) (n = 6–8, m = 1–4, n + m = 9 to 10, and where m = 12) clusters increase due to a greater extent of electron transfer occurring between the inner hydration shell HB donors and the HB acceptors of the outer hydration shell. The HB bonds of [Mg(H2O)n]2+–m(H2O) (n = 6–8, m = 1–4, n + m = 9 to 10, and where m = 12) clusters were observed, on average, to be weaker than that of the water dimer by as much as 0.086, and stronger, on average, by as much as 0.010 mydn/Å.
- An increase in the NBO charges of O atoms belonging to the first hydration shell is due to a greater magnitude of charge transfer between the inner and outer hydration shell and leads to a strengthening of the ion–solvent interactions (i.e., Mg–O bonds). The ion–solvent interactions, for clusters with a secondary hydration shell, are strengthened from a larger amount of charge transfer between lp(O) → lp(Mg) orbitals.
- From the explicit and implicit solvation of the Mg2+ ion, cumulative local mode force constants , which consider both Mg–O and HB interactions, were derived and suggested a CN of 5 and 6 to be prevalent among the clusters investigated, where a CN of 6 is primarily preferred in the instance where the second shell allocates 1 and 12 water molecules.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fröhlich, P.; Lorenz, T.; Martin, G.; Brett, B.; Bertau, M. Valuable Metals-Recovery Processes, Current Trends, and Recycling Strategies. Angew. Chem. Int. 2017, 56, 2544–2580. [Google Scholar] [CrossRef]
- Casetta, M.; Michaux, G.; Ohl, B.; Duquesne, S.; Bourbigot, S. Key Role of Magnesium Hydroxide Surface Treatment in the Flame Retardancy of Glass Fiber Reinforced Polyamide 6. Polym. Degrad. Stab. 2018, 148, 95–103. [Google Scholar] [CrossRef]
- Yam, B.J.; Le, D.K.; Do, N.H.; Nguyen, P.T.; Thai, Q.B.; Phan-Thien, N.; Duong, H.M. Recycling of Magnesium Waste into Magnesium Hydroxide Aerogels. J. Environ. Chem. Eng. 2020, 8, 104101. [Google Scholar] [CrossRef]
- Nguyen, Q.B.; Nai, M.L.S.; Nguyen, A.S.; Seetharaman, S.; Leong, E.W.W.; Gupta, M. Synthesis and Properties of Light Weight Magnesium–Cenosphere Composite. Mater. Sci. Technol. 2016, 32, 923–929. [Google Scholar] [CrossRef]
- Powell, B.; Krajewski, P.; Luo, A. Magnesium Alloys for Lightweight Powertrains and Automotive Structures. In Materials, Design and Manufacturing for Lightweight Vehicles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 125–186. [Google Scholar]
- Kurtuluş, E.; Tekin, G. Conversion of Aluminum Front Bumper System to Magnesium Material by Using Design of Experiment Method. Int. J. Automot. Technol. 2021, 5, 34–42. [Google Scholar] [CrossRef]
- Dziubińska, A.; Gontarz, A.; Dziubiński, M.; Barszcz, M. The Forming of Magnesium Alloy Forgings for Aircraft and Automotive Applications. Adv. Sci. Technol. Res. 2016, 10, 158–168. [Google Scholar] [CrossRef]
- Dvorsky, D.; Kubasek, J.; Vojtech, D.; Minarik, P. Novel Aircraft Mg-Y-Gd-Ca Alloys with High Ignition Temperature and Suppressed Flammability. Mater. Lett. 2020, 264, 127313. [Google Scholar] [CrossRef]
- Kulekci, M.K. Magnesium and its Alloys Applications in Automotive Industry. Int. J. Adv. Manuf. Technol. 2007, 39, 851–865. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Zhao, S.; Li, T.; Su, D.; Guo, S.; Wang, G. Recent Advances in Rechargeable Magnesium-Based Batteries for High-Efficiency Energy Storage. Adv. Energy Mater. 2020, 10, 1903591. [Google Scholar] [CrossRef]
- Nakatsugawa, I.; Chino, Y.; Nakano, H. Discharge Behavior of Water-Activated Magnesium Battery. In Magnesium Alloys—Selected Issue; IntechOpen: Rijeka, Croatia, 2018; pp. 1–23. [Google Scholar]
- Shao, H.; He, L.; Lin, H.; Li, H.W. Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technol. 2017, 6, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yan, X.; Li, X. Environmental Risks for Application of Magnesium Slag to Soils in China. J. Integr. Agric. 2020, 19, 1671–1679. [Google Scholar] [CrossRef]
- Koltun, P.; Tharumarajah, A.; Ramakrishnan, S. Life Cycle Environmental Impact of Magnesium Automotive Components. In Essential Readings in Magnesium Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 175–180. [Google Scholar]
- Markham, G.D.; Glusker, J.P.; Bock, C.W. The Arrangement of First- and Second-Sphere Water Molecules in Divalent Magnesium Complexes: Results from Molecular Orbital and Density Functional Theory and from Structural Crystallography. J. Phys. Chem. B 2002, 106, 5118–5134. [Google Scholar] [CrossRef]
- Caminiti, R.; Licheri, G.; Piccaluga, G.; Pinna, G. X-ray Diffraction Study of MgCl2 Aqueous Solutions. J. Appl. Crystallogr. 1979, 12, 34–38. [Google Scholar] [CrossRef]
- Caminiti, R.; Licheri, G.; Piccaluga, G.; Pinna, G. Diffraction of X-rays and Hydration Phenomena in Aqueous Solutions of Mg(NO3)2. Chem. Phys. Lett. 1979, 61, 45–49. [Google Scholar] [CrossRef]
- Marques, M.A.; Cabaco, M.I.; de Barros Marques, M.I.; Gaspar, A.M. Intermediate-range Order in Aqueous Solutions of Salts Constituted of Divalent Ions Combined with Monovalent Counter-ions. J. Phys. Condens. Matter 2002, 14, 7427–7448. [Google Scholar] [CrossRef]
- Callahan, K.M.; Casillas-Ituarte, N.N.; Roeselová, M.; Allen, H.C.; Tobias, D.J. Solvation of Magnesium Dication: Molecular Dynamics Simulation and Vibrational Spectroscopic Study of Magnesium Chloride in Aqueous Solutions. J. Phys. Chem. A 2010, 114, 5141–5148. [Google Scholar] [CrossRef] [PubMed]
- Waluyo, I.; Huang, C.; Nordlund, D.; Bergmann, U.; Weiss, T.M.; Pettersson, L.G.M.; Nilsson, A. The Structure of Water in the Hydration Shell of Cations from X-ray Raman and Small Angle X-ray Scattering Measurements. J. Chem. Phys. 2011, 134, 064513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, M.F.; O’Brien, J.T.; Prell, J.S.; Wu, C.C.; Saykally, R.J.; Williams, E.R. Hydration of Alkaline Earth Metal Dications: Effects of Metal Ion Size Determined Using Infrared Action Spectroscopy. J. Am. Chem. Soc. 2009, 131, 13270–13277. [Google Scholar] [CrossRef]
- Rodriguez-Cruz, S.E.; Jockusch, R.A.; Williams, E.R. Hydration Energies and Structures of Alkaline Earth Metal Ions, M2+(H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba. J. Am. Chem. Soc. 1999, 121, 8898–8906. [Google Scholar] [CrossRef] [Green Version]
- Bruni, F.; Imberti, S.; Mancinelli, R.; Ricci, M.A. Aqueous Solutions of Divalent Chlorides: Ions Hydration Shell and Water Structure. J. Chem. Phys. 2012, 136, 064520. [Google Scholar] [CrossRef]
- Peschke, M.; Blades, A.T.; Kebarle, P. Hydration Energies and Entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from Gas-Phase Ion-Water Molecule Equilibria Determinations. J. Phys. Chem. A 1998, 102, 9978–9985. [Google Scholar] [CrossRef]
- Albright, J.N. X-ray Diffraction Studies of Aqueous Alkaline-Earth Chloride Solutions. J. Chem. Phys. 1972, 56, 3783–3786. [Google Scholar] [CrossRef]
- Cowan, J. Magnesium Activation of Nuclease Enzymes-The Importance of Water. Inorg. Chim. Acta 1998, 275–276, 24–27. [Google Scholar] [CrossRef]
- Martínez, J.M.; Pappalardo, R.R.; Marcos, E.S. First-Principles Ion-Water Interaction Potentials for Highly Charged Monatomic Cations. Computer Simulations of Al3+, Mg2+, and Be2+ in Water. J. Am. Chem. Soc. 1999, 121, 3175–3184. [Google Scholar] [CrossRef]
- Ohtaki, H.; Radnai, T. Structure and Dynamics of Hydrated Ions. Chem. Rev. 1993, 93, 1157–1204. [Google Scholar] [CrossRef]
- Cappa, C.D.; Smith, J.D.; Messer, B.M.; Cohen, R.C.; Saykally, R.J. Effects of Cations on the Hydrogen Bond Network of Liquid Water: New Results from X-ray Absorption Spectroscopy of Liquid Microjets. J. Phys. Chem. B 2006, 110, 5301–5309. [Google Scholar] [CrossRef] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Lightstone, F.C.; Schwegler, E.; Hood, R.Q.; Gygi, F.; Galli, G. A First Principles Molecular Dynamics Simulation of the Hydrated Magnesium Ion. Chem. Phys. Lett. 2001, 343, 549–555. [Google Scholar] [CrossRef]
- Larentzos, J.P.; Criscenti, L.J. A Molecular Dynamics Study of Alkaline Earth Metal-Chloride Complexation in Aqueous Solution. J. Phys. Chem. B 2008, 112, 14243–14250. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Dixit, M.K.; Tembe, B.L. Solvation Structures and Dynamics of the Magnesium Chloride (Mg2+–Cl−) Ion Pair in Water-Ethanol Mixtures. J. Phys. Chem. A 2013, 117, 8703–8709. [Google Scholar] [CrossRef]
- Piquemal, J.P.; Perera, L.; Cisneros, G.A.; Ren, P.; Pedersen, L.G.; Darden, T.A. Towards Accurate Solvation Dynamics of Divalent Cations in Water Using the Polarizable Amoeba Force Field: From Energetics to Structure. J. Chem. Phys. 2006, 125, 054511. [Google Scholar] [CrossRef]
- Tongraar, A.; Rode, B.M. Structural Arrangement and Dynamics of the Hydrated Mg2+: An Ab Initio QM/MM Molecular Dynamics Simulation. Chem. Phys. Lett. 2005, 409, 304–309. [Google Scholar] [CrossRef]
- Tongraar, A.; Rode, B.M. The Role of Non-Additive Contributions on the Hydration Shell Structure of Mg2+ Studied by Born-Oppenheimer Ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation. Chem. Phys. Lett. 2001, 346, 485–491. [Google Scholar] [CrossRef]
- Krekeler, C.; Delle, L.S. Solvation of Positive Ions in Water: The Dominant Role of Water-Water Interaction. J. Phys. Cond. Matt. 2007, 19, 192101. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Boero, M.; Terakura, K. Hydration Properties of Magnesium and Calcium Ions from Constrained First Principles Molecular Dynamics. J. Chem. Phys. 2007, 127, 074503. [Google Scholar] [CrossRef]
- Merrill, G.N.; Webb, S.P.; Bivin, D.B. Formation of Alkali Metal/Alkaline Earth Cation Water Clusters, M(H2O)1–6, M = Li+, Na+, K+, Mg2+, and Ca2+: An Effective Fragment Potential (EFP) Case Study. J. Phys. Chem. A 2003, 107, 386–396. [Google Scholar] [CrossRef]
- Bai, G.; Yi, H.B.; Li, H.J.; Xu, J.J. Hydration Characteristics of Ca2+ and Mg2+: A Density Functional Theory, Polarized Continuum Model and Molecular Dynamics Investigation. Mol. Phys. 2013, 111, 553–568. [Google Scholar] [CrossRef]
- Lynes, O.; Austin, J.; Kerridge, A. Ab Initio Molecular Dynamics Studies of Hydroxide Coordination of Alkaline Earth Metals and Uranyl. Phys. Chem. Chem. Phys. 2019, 21, 13809–13820. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Toroz, D.; Kim, S.; Clegg, S.L.; Park, G.S.; Tommaso, D.D. Density Functional Theory based Molecular Dynamics Study of Solution Composition Effects on the Solvation Shell of Metal Ions. Phys. Chem. Chem. Phys. 2020, 22, 16301–16313. [Google Scholar] [CrossRef]
- Neela, Y.I.; Mahadevi, A.S.; Sastry, G.N. Analyzing Coordination Preferences of Mg2+ Complexes: Insights from Computational and Database Study. Struct. Chem. 2012, 24, 637–650. [Google Scholar] [CrossRef]
- Bock, C.W.; Kaufman, A.; Glusker, J.P. Coordination of Water to Magnesium Cations. Inorg. Chem. 1994, 33, 419–427. [Google Scholar] [CrossRef]
- Bock, C.W.; Markham, G.D.; Katz, A.K.; Glusker, J.P. The Arrangement of First- and Second-shell Water Molecules Around Metal Ions: Effects of Charge and Size. Theor. Chem. Acc. 2006, 115, 100–112. [Google Scholar] [CrossRef]
- Rao, J.S.; Dinadayalane, T.C.; Leszczynski, J.; Sastry, G.N. Comprehensive Study on the Solvation of Mono- and Divalent Metal Cations: Li+, Na+, K+, Be2+, Mg2+ and Ca2+. J. Phys. Chem. A 2008, 112, 12944–12953. [Google Scholar] [CrossRef]
- Adrian-Scotto, M.; Mallet, G.; Vasilescu, D. Hydration of Mg++: A Quantum DFT and Ab Initio HF Study. J. Mol. Struc. THEOCHEM 2005, 728, 231–242. [Google Scholar] [CrossRef]
- Gonzalez, J.D.; Florez, E.; Romero, J.; Reyes, A.; Restrepo, A. Microsolvation of Mg2+, Ca2+: Strong Influence of Formal Charges in Hydrogen Bond Networks. J. Mol. Model. 2013, 19, 1763–1777. [Google Scholar] [CrossRef] [PubMed]
- Tunell, I.; Lim, C. Factors Governing the Metal Coordination Number in Isolated Group IA and IIA Metal Hydrates. Inorg. Chem. 2006, 45, 4811–4819. [Google Scholar] [CrossRef] [PubMed]
- León-Pimentel, C.I.; Amaro-Estrada, J.I.; Hernández-Cobos, J.; Saint-Martin, H.; Ramírez-Solís, A. Aqueous Solvation of Mg(ii) and Ca(ii): A Born-Oppenheimer Molecular Dynamics Study of Microhydrated Gas Phase Clusters. J. Chem. Phys. 2018, 148, 144307. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, M.; Siegbahn, P.E.M.; Sandstrŏm, M. Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory. J. Phys. Chem. A 1998, 102, 219–228. [Google Scholar] [CrossRef]
- Cremer, D.; Kraka, E. From Molecular Vibrations to Bonding, Chemical Reactions, and Reaction Mechanism. Curr. Org. Chem. 2010, 14, 1524–1560. [Google Scholar] [CrossRef]
- Setiawan, D.; Sethio, D.; Cremer, D.; Kraka, E. From Strong to Weak NF Bonds: On the Design of a New Class of Fluorinating Agents. Phys. Chem. Chem. Phys. 2018, 20, 23913–23927. [Google Scholar] [CrossRef]
- Tao, Y.; Tian, C.; Verma, N.; Zou, W.; Wang, C.; Cremer, D.; Kraka, E. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis. J. Chem. Theory Comput. 2018, 14, 2558–2569. [Google Scholar] [CrossRef]
- Krapp, A.; Bickelhaupt, F.M.; Frenking, G. Orbital Overlap and Chemical Bonding. Chem. Eur. J. 2006, 12, 9196–9216. [Google Scholar] [CrossRef]
- Zhao, L.; Hermann, M.; Schwarz, W.H.E.; Frenking, G. The Lewis Electron-Pair Bonding Model: Modern Energy Decomposition Analysis. Nat. Rev. Chem. 2019, 3, 48–63. [Google Scholar] [CrossRef]
- Konkoli, Z.; Cremer, D. A New Way of Analyzing Vibrational Spectra. I. Derivation of Adiabatic Internal Modes. Int. J. Quantum Chem. 1998, 67, 1–9. [Google Scholar] [CrossRef]
- Konkoli, Z.; Larsson, J.A.; Cremer, D. A New Way of Analyzing Vibrational Spectra. II. Comparison of Internal Mode Frequencies. Int. J. Quantum Chem. 1998, 67, 11–27. [Google Scholar] [CrossRef]
- Konkoli, Z.; Cremer, D. A New Way of Analyzing Vibrational Spectra. III. Characterization of Normal Vibrational Modes in terms of Internal Vibrational Modes. Int. J. Quantum Chem. 1998, 67, 29–40. [Google Scholar] [CrossRef]
- Konkoli, Z.; Larsson, J.A.; Cremer, D. A New Way of Analyzing Vibrational Spectra. IV. Application and Testing of Adiabatic Modes within the Concept of the Characterization of Normal Modes. Int. J. Quantum Chem. 1998, 67, 41–55. [Google Scholar] [CrossRef]
- Zou, W.; Kalescky, R.; Kraka, E.; Cremer, D. Relating Normal Vibrational Modes to Local Vibrational Modes with the Help of an Adiabatic Connection Scheme. J. Chem. Phys. 2012, 137, 084114. [Google Scholar] [CrossRef] [Green Version]
- Kalescky, R.; Kraka, E.; Cremer, D. Identification of the Strongest Bonds in Chemistry. J. Phys. Chem. A 2013, 117, 8981–8995. [Google Scholar] [CrossRef]
- Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D. Quantitative Assessment of the Multiplicity of Carbon-Halogen Bonds: Carbenium and Halonium Ions with F, Cl, Br, and I. J. Phys. Chem. A 2014, 118, 1948–1963. [Google Scholar] [CrossRef] [PubMed]
- Kraka, E.; Cremer, D. Characterization of CF Bonds with Multiple-Bond Character: Bond Lengths, Stretching Force Constants, and Bond Dissociation Energies. ChemPhysChem 2009, 10, 686–698. [Google Scholar] [CrossRef]
- Humason, A.; Zou, W.; Cremer, D. 11,11-Dimethyl-1,6-methano[10]annulene-An Annulene with an Ultralong CC Bond or a Fluxional Molecule? J. Phys. Chem. A 2014, 119, 1666–1682. [Google Scholar] [CrossRef] [PubMed]
- Sethio, D.; Lawson Daku, L.M.; Hagemann, H.; Kraka, E. Quantitative Assessment of B–B–B, B–Hb–B, and B–Ht Bonds: From BH3 to B12H122−. ChemPhysChem 2019, 20, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Makoś, M.Z.; Freindorf, M.; Sethio, D.; Kraka, E. New Insights into Fe–H2 and Fe–H− Bonding of a [NiFe] Hydrogenase Mimic—A Local Vibrational Mode Study. Theor. Chem. Acc. 2019, 138, 76. [Google Scholar] [CrossRef]
- Sethio, D.; Oliveira, V.; Kraka, E. Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy. Molecules 2018, 23, 2763. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, D.; Kraka, E.; Cremer, D. Description of Pnicogen Bonding with the help of Vibrational Spectroscopy—The Missing Link Between Theory and Experiment. Chem. Phys. Lett. 2014, 614, 136–142. [Google Scholar] [CrossRef]
- Oliveira, V.; Cremer, D.; Kraka, E. The Many Facets of Chalcogen Bonding: Described by Vibrational Spectroscopy. J. Phys. Chem. A 2017, 121, 6845–6862. [Google Scholar] [CrossRef]
- Oliveira, V.; Kraka, E.; Cremer, D. The Intrinsic Strength of the Halogen Bond: Electrostatic and Covalent Contributions Described by Coupled Cluster Theory. Phys. Chem. Chem. Phys. 2016, 18, 33031–33046. [Google Scholar] [CrossRef]
- Oliveira, V.; Kraka, E.; Cremer, D. Quantitative Assessment of Halogen Bonding Utilizing Vibrational Spectroscopy. Inorg. Chem. 2016, 56, 488–502. [Google Scholar] [CrossRef]
- Oliveira, V.; Cremer, D. Transition from Metal-Ligand Bonding to Halogen Bonding Involving a Metal as Halogen Acceptor: A Study of Cu, Ag, Au, Pt, and Hg Complexes. Chem. Phys. Lett. 2017, 681, 56–63. [Google Scholar] [CrossRef]
- Yannacone, S.; Sethio, D.; Kraka, E. Quantitative Assessment of Intramolecular Hydrogen Bonds in Neutral Histidine. Theor. Chem. Acc. 2020, 139, 125. [Google Scholar] [CrossRef]
- Martins, J.; Quintino, R.P.; Politi, J.R.S.; Sethio, D.; Gargano, R.; Kraka, E. Computational Analysis of Vibrational Frequencies and Rovibrational Spectroscopic Constants of Hydrogen Sulfide Dimer using MP2 and CCSD(T). Spectrochim. Acta A 2020, 239, 118540. [Google Scholar] [CrossRef]
- Freindorf, M.; Kraka, E.; Cremer, D. A Comprehensive Analysis of Hydrogen Bond Interactions Based on Local Vibrational Modes. Int. J. Quantum Chem. 2012, 112, 3174–3187. [Google Scholar] [CrossRef]
- Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D. Local Vibrational Modes of the Water Dimer—Comparison of Theory and Experiment. Chem. Phys. Lett. 2012, 554, 243–247. [Google Scholar] [CrossRef]
- Kalescky, R.; Kraka, E.; Cremer, D. Local Vibrational Modes of the Formic Acid Dimer—The Strength of the Double H-Bond. Mol. Phys. 2013, 111, 1497–1510. [Google Scholar] [CrossRef]
- Tao, Y.; Zou, W.; Jia, J.; Li, W.; Cremer, D. Different Ways of Hydrogen Bonding in Water—Why Does Warm Water Freeze Faster than Cold Water? J. Chem. Theory Comput. 2017, 13, 55–76. [Google Scholar] [CrossRef]
- Thanthiriwatte, K.S.; Hohenstein, E.G.; Burns, L.A.; Sherrill, C.D. Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions. J. Chem. Theory Comput. 2010, 7, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, J.D.; Head-Gordon, M. Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Taxer, T.; Ončák, M.; Barwa, E.; van der Linde, C.; Beyer, M.K. Electronic Spectroscopy and Nanocalorimetry of Hydrated Magnesium Ions [Mg(H2O)n]2+, n = 20–70: Spontaneous Formation of a Hydrated Electron? Faraday Discuss. 2019, 217, 584–600. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Wategaonkar, S. ZEKE Photoelectron Spectroscopy of p-Fluorophenol···H2S/H2O Complexes and Dissociation Energy Measurement Using the Birge-Sponer Extrapolation Method. J. Phys. Chem. A 2014, 118, 9386–9396. [Google Scholar] [CrossRef]
- Da Costa, L.M.; Stoyanov, S.R.; Gusarov, S.; Tan, X.; Gray, M.R.; Stryker, J.M.; Tykwinski, R.; de M. Carneiro, J.W.; Seidl, P.R.; Kovalenko, A. Density Functional Theory Investigation of the Contributions of π–π Stacking and Hydrogen-Bonding Interactions to the Aggregation of Model Asphaltene Compounds. Energy Fuels 2012, 26, 2727–2735. [Google Scholar] [CrossRef]
- Domagała, M.; Palusiak, M. The Influence of Substituent Effect on Noncovalent Interactions in Ternary Complexes Stabilized by Hydrogen-Bonding and Halogen-Bonding. Comput. Theor. Chem. 2014, 1027, 173–178. [Google Scholar] [CrossRef]
- Sutradhar, D.; Chandra, A.K.; Zeegers-Huyskens, T. Theoretical Study of the Interaction of Fluorinated Dimethyl Ethers and the ClF and HF Molecules. Comparison Between Halogen and Hydrogen Bonds. Int. J. Quantum Chem. 2016, 116, 670–680. [Google Scholar] [CrossRef]
- Takano, Y.; Houk, K.N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. J. Chem. Theory Comput. 2004, 1, 70–77. [Google Scholar] [CrossRef]
- Jesus, A.J.L.; Tomé, L.I.N.; Eusébio, M.E.S.; Rosado, M.T.S.; Redinha, J.S. Hydration of Cyclohexylamines: CPCM Calculation of Hydration Gibbs Energy of the Conformers. J. Phys. Chem. A 2007, 111, 3432–3437. [Google Scholar] [CrossRef] [PubMed]
- Kraka, E.; Zou, W.; Tao, Y. Decoding Chemical Information from Vibrational Spectroscopy Data: Local Vibrational Mode Theory. WIREs Comput. Mol. Sci. 2020, 10, 1480. [Google Scholar] [CrossRef]
- Kraka, E.; Larsson, J.A.; Cremer, D. Generalization of the Badger Rule Based on the Use of Adiabatic Vibrational Modes. In Computational Spectroscopy; Grunenberg, J., Ed.; Wiley: New York, NY, USA, 2010; pp. 105–149. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian~16 Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zou, W.; Tao, Y.; Freindorf, M.; Makoś, M.Z.; Verma, N.; Kraka, E. Local Vibrational Mode Analysis (LModeA. Computational and Theoretical Chemistry Group (CATCO); Southern Methodist University: Dallas, TX, USA, 2020. [Google Scholar]
- Weinhold, F.; Landis, C.R. Valency and Bonding: A Natural Bond Orbital Donor—Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions From a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Keith, T.A. AIMall version 17.01.25; TK Gristmill Software: Overland Park, KS, USA, 2019; Available online: aim.tkgristmill.com (accessed on 21 April 2021).
- Cremer, D.; Kraka, E. Chemical Bonds without Bonding Electron Density? Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond? Angew. Chem. Int. Ed. 1984, 23, 627–628. [Google Scholar] [CrossRef]
- Cremer, D.; Kraka, E. A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy. Croat. Chem. Acta 1984, 57, 1259–1281. [Google Scholar]
- Kraka, E.; Cremer, D. Chemical Implication of Local Features of the Electron Density Distribution. In Theoretical Models of Chemical Bonding. The Concept of the Chemical Bond; Maksic, Z.B., Ed.; Springer: Heidelberg, Germany, 1990; Volume 2, pp. 453–542. [Google Scholar]
- Bol, W.; Gerrits, G.J.A.; van Panthaleon Eck, C.L. The Hydration of Divalent Cations in Aqueous Solution. An X-ray Investigation with Isomorphous Replacement. J. Appl. Crystallogr. 1970, 3, 486–492. [Google Scholar] [CrossRef]
- Vanhouteghem, F.; Lenstra, A.T.H.; Schweiss, P. Magnesium Bis(hydrogen maleate) Hexahydrate, [Mg(C4H3O4)2]·6H2O, Studied by Elastic Neutron Diffraction and Ab Initio Calculations. Acta Crystallogr. B Struct. Sci. Cryst. 1987, 43, 523–528. [Google Scholar] [CrossRef]
- Tao, Y.; Zou, W.; Kraka, E. Strengthening of Hydrogen Bonding With the Push-Pull Effect. Chem. Phys. Lett. 2017, 685, 251–258. [Google Scholar] [CrossRef]
- Delgado, A.A.A.; Sethio, D.; Munar, I.; Aviyente, V.; Kraka, E. Local Vibrational Mode Analysis of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Ca2+ Clusters. J. Chem. Phys. 2020, 153, 224303. [Google Scholar] [CrossRef]
- Richens. Chemistry of Aqua Ions; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Carl, D.R.; Armentrout, P.B. Threshold Collision-Induced Dissociation of Hydrated Magnesium: Experimental and Theoretical Investigation of the Binding Energies for Mg2+(H2O)x Complexes (x = 2–10). ChemPhysChem 2012, 14, 681–697. [Google Scholar] [CrossRef] [PubMed]
# | Molecule | Sym. | R (Å) | (cm) | (mdyn/Å) | BSO n | (e/Å) | (h/Å) | (h/e) |
---|---|---|---|---|---|---|---|---|---|
First Hydration Shell | |||||||||
1 | [Mg(HO)] | C | 1.957 | 556 | 1.748 | 1.104 | 0.325 | 0.098 | 0.301 |
2 | [Mg(HO)] | D | 1.972 | 538 | 1.636 | 1.047 | 0.314 | 0.091 | 0.289 |
3 | [Mg(HO)] | D | 1.996 | 487 | 1.342 | 0.894 | 0.286 | 0.092 | 0.321 |
4 | [Mg(HO)] | S | 2.052 | 460 | 1.194 | 0.815 | 0.261 | 0.087 | 0.333 |
5 | [Mg(HO)] | C | 2.074 | 393 | 0.875 | 0.636 | 0.229 | 0.075 | 0.327 |
6 | [Mg(HO)] | O | 2.108 | 357 | 0.722 | 0.546 | 0.208 | 0.067 | 0.322 |
Second Hydration Shell | |||||||||
7 | [Mg(H2O)5]2+–HO | C | 2.067 | 386 | 0.845 | 0.618 | 0.233 | 0.077 | 0.330 |
8 | [Mg(H2O)5]2+–2(HO) | C | 2.060 | 406 | 0.931 | 0.668 | 0.237 | 0.078 | 0.330 |
9 | [Mg(H2O)5]2+–3(HO) | C | 2.056 | 407 | 0.939 | 0.673 | 0.241 | 0.079 | 0.327 |
10 | [Mg(H2O)5]2+–4(HO) | C | 2.046 | 418 | 0.989 | 0.701 | 0.249 | 0.080 | 0.324 |
11 | [Mg(H2O)5]2+–5(HO) | C | 2.045 | 418 | 0.988 | 0.700 | 0.249 | 0.081 | 0.324 |
12 | [Mg(H2O)5]2+–12(HO) | C | 2.043 | 417 | 0.984 | 0.698 | 0.252 | 0.080 | 0.318 |
13 | [Mg(H2O)6]2+–HO | C | 2.110 | 356 | 0.718 | 0.543 | 0.208 | 0.066 | 0.320 |
14 | [Mg(H2O)6]2+–2(HO) | C | 2.104 | 365 | 0.757 | 0.565 | 0.212 | 0.068 | 0.320 |
15 | [Mg(H2O)6]2+–3(HO) | C | 2.102 | 360 | 0.732 | 0.551 | 0.213 | 0.068 | 0.320 |
16 | [Mg(H2O)6]2+–4(HO) | C | 2.094 | 368 | 0.769 | 0.573 | 0.219 | 0.069 | 0.317 |
17 | [Mg(H2O)6]2+–12(HO) | C | 2.088 | 381 | 0.822 | 0.605 | 0.221 | 0.070 | 0.318 |
Mg–O Bond References | |||||||||
R1 | MgH2 | D | 1.708 | 1646 | 1.000 | 1.544 | 0.357 | −0.022 | −0.061 |
R2 | Mg–O | C | 1.755 | 807 | 3.685 | 2.000 | 0.526 | 0.101 | 0.191 |
# | Molecule | Sym. | R (Å) | (cm) | (mdyn/Å) | BSO n | (e/Å) | (h/Å) | (h/e) |
---|---|---|---|---|---|---|---|---|---|
7 | [Mg(H2O)5]2+–HO | C | 1.806 | 593 | 0.197 | 0.337 | 0.225 | 0.002 | 0.009 |
8 | [Mg(H2O)5]2+–2(HO) | C | 1.815 | 572 | 0.183 | 0.330 | 0.220 | 0.004 | 0.017 |
9 | [Mg(H2O)5]2+–3(HO) | C | 1.844 | 536 | 0.162 | 0.318 | 0.206 | 0.007 | 0.034 |
10 | [Mg(H2O)5]2+–4(HO) | C | 1.887 | 473 | 0.125 | 0.297 | 0.186 | 0.011 | 0.059 |
11 | [Mg(H2O)5]2+–5(HO) | C | 1.867 | 512 | 0.153 | 0.309 | 0.197 | 0.007 | 0.047 |
12 | [Mg(H2O)5]2+–12(HO) | C | 1.811 | 626 | 0.221 | 0.346 | 0.225 | 0.002 | 0.014 |
13 | [Mg(H2O)6]2+–HO | C | 1.829 | 549 | 0.169 | 0.323 | 0.212 | 0.006 | 0.028 |
14 | [Mg(H2O)6]2+–2(HO) | C | 1.864 | 539 | 0.163 | 0.319 | 0.208 | 0.007 | 0.034 |
15 | [Mg(H2O)6]2+–3(HO) | C | 1.857 | 574 | 0.184 | 0.330 | 0.198 | 0.009 | 0.048 |
16 | [Mg(H2O)6]2+–4(HO) | C | 1.928 | 474 | 0.126 | 0.297 | 0.170 | 0.013 | 0.079 |
17 | [Mg(H2O)6]2+–12(HO) | C | 1.834 | 611 | 0.209 | 0.342 | 0.202 | 0.007 | 0.079 |
HB references | |||||||||
R3 | [FH2]− | D | 1.142 | 1202 | 0.815 | 0.500 | 1.180 | −1.316 | −1.115 |
R4 | FH | C | 0.917 | 4180 | 9.854 | 1.000 | 2.544 | −5.471 | −2.150 |
HB of the water dimer | |||||||||
R5 | (H2O)2 | C | 1.916 | 615 | 0.211 | 0.343 | 0.173 | 0.015 | 0.089 |
Cluster | (mdyn/Å) | BE (kcal/mol) |
---|---|---|
1 | 1.748 | −75.595 |
2 | 3.272 | −143.372 |
3 | 4.026 | −198.088 |
4 | 4.776 | −243.485 |
5 | 4.377 | −275.652 |
6 | 4.332 | −305.297 |
7 | 4.617 | −300.834 |
8 | 5.388 | −324.944 |
9 | 5.669 | −345.949 |
10 | 5.944 | −365.531 |
11 | 6.316 | −382.337 |
12 | 9.788 | −478.727 |
13 | 4.644 | −326.223 |
14 | 5.191 | −347.678 |
15 | 5.492 | −368.393 |
16 | 5.616 | −383.631 |
17 | 9.941 | −504.860 |
Cluster | (mdyn/Å) | BE (kcal/mol) |
---|---|---|
1 | 0.434 | −8.431 |
2 | 1.313 | −17.367 |
3 | 2.584 | −25.834 |
4 | 2.874 | −35.927 |
5 | 3.887 | −45.209 |
6 | 4.960 | −57.247 |
Cluster | (mdyn/Å) | (mdyn/Å) |
---|---|---|
1a | 0.657 | 1.147 |
2a | 1.140 | 2.024 |
3a | 1.779 | 2.685 |
4a | 2.317 | 3.492 |
5a | 3.052 | 3.705 |
6a | 4.404 | 3.534 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, A.A.A.; Sethio, D.; Kraka, E. Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters. Inorganics 2021, 9, 31. https://doi.org/10.3390/inorganics9050031
Delgado AAA, Sethio D, Kraka E. Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters. Inorganics. 2021; 9(5):31. https://doi.org/10.3390/inorganics9050031
Chicago/Turabian StyleDelgado, Alexis Antoinette Ann, Daniel Sethio, and Elfi Kraka. 2021. "Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters" Inorganics 9, no. 5: 31. https://doi.org/10.3390/inorganics9050031
APA StyleDelgado, A. A. A., Sethio, D., & Kraka, E. (2021). Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters. Inorganics, 9(5), 31. https://doi.org/10.3390/inorganics9050031