Europium-Doped Y2O3-Coated Diatomite Nanomaterials: Hydrothermal Synthesis, Characterization, Optical Study with Enhanced Photocatalytic Performance
Abstract
:1. Introduction
2. Experimental Methods
2.1. Chemicals and Materials
2.2. Characterization
2.3. Preparation of Eu-Doped Y2O3 Nanoparticles
2.4. Diatomite Coated with Eu-Doped Y2O3 Nanoparticles
2.5. The Evaluation of Catalytic Activity
3. Results and Discussion
3.1. Characterizing the Synthesized Samples
3.2. Synergistic Effect of Photocatalysis and Sonocatalysis on the Degradation of RB19 Using Diatomite Coated with Eu-Doped Y2O3 Nanoparticles
3.3. Effect of Eu3+ Content of Diatom Coated Eu-Doped Y2O3 Nanoparticles
3.4. Primary Dye Concentration Effect
3.5. The Amount of Catalyst Effect
3.6. Effect of Sonication Energy
3.7. Photocatalyst Recycling and Photostability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanifehpour, Y.; Soltani, B.; Amani-Ghadim, A.R.; Hedayati, B.; Khomami, B.; Joo, S.W. Synthesis and characterization of samarium-doped ZnS nanoparticles: A novel visible light responsive photocatalyst. Mater. Res. Bull. 2016, 76, 411. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.G.; Martens, W.N.; Brown, R.; Hashib, M.A. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 2010, 261, 3. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Wang, Y.; Bian, H.; Shen, T.; Wu, Y.; Chen, Z. Nitrogen doped TiO2 nanotube arrays with high photoelectrochemical activity for photocatalytic applications. Appl. Surf. Sci. 2013, 280, 523. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Delegan, N.; El Khakani, M.A. Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res. 2013, 47, 6801. [Google Scholar] [CrossRef]
- Giannakis, S.; Andrew Lin, K.-Y.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Karim, A.V.; Hassani, A.; Eghbali, P.; Nidheesh, P.V. Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100965. [Google Scholar] [CrossRef]
- Khataee, A.; Karimi, A.; Arefi-oskoui, S.; Darvishi, R.; Soltani, C.; Hanifehpour, Y.; Soltani, B.; Joo, S.W. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason. Sonochem. 2015, 22, 371. [Google Scholar] [CrossRef] [PubMed]
- Eskandarloo, H.; Badiei, A.; Behnajady, M.A.; Ziarani, G.M. Ultrasonic-assisted sol–gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency. Ultrason. Sonochem. 2015, 26, 281. [Google Scholar] [CrossRef]
- Khataee, A.; Karimi, A.; Darvishi, R.; Soltani, C.; Safarpour, M.; Hanifehpour, Y.; Joo, S. Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Appl. Catal. A Gen. 2014, 488, 160. [Google Scholar] [CrossRef]
- Savun-Hekimoğlu, B.; Ince, N.H. Optimization of Methylparaben Degradation by Sonocatalysis. Ultrason. Sonochem. 2019, 58, 104623. [Google Scholar] [CrossRef]
- Fan, G.; Yang, S.; Du, B.; Luo, J.; Lin, X.; Li, X. Sono-photo hybrid process for the synergistic degradation of levofloxacin by FeVO4/BiVO4: Mechanisms and kinetics. Environ. Res. 2022, 204, 112032. [Google Scholar] [CrossRef] [PubMed]
- Al-Musawi, T.J.; McKay, G.; Rajiv, P.; Mengelizadeh, N.; Balarak, D. Efficient sonophotocatalytic degradation of acid blue 113 dye using a hybrid nanocomposite of CoFe2O4 nanoparticles loaded on multi-walled carbon nanotubes. J. Photochem. Photobiol. A Chem. 2021, 424, 113617. [Google Scholar] [CrossRef]
- Saharan, P.; Chaudhary, G.R.; Lata, S.; Mehta, S.K.; Mor, S. Ultra fast and effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrason. Sonochem. 2015, 22, 317. [Google Scholar] [CrossRef]
- Villaroel, E.; Silva-Agredo, J.; Petrier, C.; Taborda, G.; Torres-Palma, R.A. Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix. Ultrason. Sonochem. 2014, 21, 1763. [Google Scholar] [CrossRef]
- Bansal, P.; Chaudhary, G.R.; Mehta, S.K. Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes. Chem. Eng. J. 2015, 280, 475. [Google Scholar] [CrossRef]
- Chakma, S.; Moholkar, V.S. Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason. Sonochem. 2015, 22, 287. [Google Scholar] [CrossRef] [PubMed]
- Anju, S.G.; Yesodharan, S.; Yesodharan, E.P. Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem. Eng. J. 2012, 84, 189–190. [Google Scholar] [CrossRef]
- Khataee, A.; Saadi, S.; Safarpour, M.; Joo, S.W. Sonocatalytic performance of Er-doped ZnO for degradation of a textile dye . Ultrason. Sonochem. 2015, 27, 379. [Google Scholar] [CrossRef]
- Khataee, A.; Soltani, R.D.C.; Karimi, A.; Joo, S.W. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrason. Sonochem. 2015, 23, 219. [Google Scholar] [CrossRef]
- Agdi, K.; Bouaid, A.; Esteban, A.M.; Hernando, P.F.; Azmani, A.; Camara, C. Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earth-remediation method. J. Environ. Monit. 2000, 2, 420. [Google Scholar] [CrossRef]
- Alvarez, E.; Blanco, J.; Avila, P.; Knapp, C. Activation of monolithic catalysts based on diatomaceous earth for sulfur dioxide oxidation. Catal. Today 1999, 53, 557. [Google Scholar] [CrossRef]
- Li, F.; Xing, Y.; Huang, M.; Li, K.L.; Yu, T.T.; Zhang, Y.X.; Losic, D. MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 7855. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243. [Google Scholar] [CrossRef]
- Basavegowda, N.; Mishra, K.; Raju, S.; Thombal, K.; Kaliraj, Y.R.; Lee, Y.R. Sonochemical Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles as a Novel Heterogeneous Catalyst for the Construction of Biologically Interesting 1,3-Thiazolidin-4-ones. Catal. Lett. 2017, 147, 2630–2639. [Google Scholar] [CrossRef]
- Alford, N.M.; Birchall, J.D.; Clegg, W.J.; Harmer, M.A.; Kendall, K.; Jones, D.H. Physical and mechanical properties of YBa2Cu3O7-δ superconductors. J. Mater. Sci. 1988, 23, 761. [Google Scholar] [CrossRef]
- Hu, C.; Xiang, W.; Chen, P.; Li, Q.; Xiang, R.; Zhou, L. Influence of Y2O3 on densification, flexural strength and heat shock resistance of cordierite-based composite ceramics. Ceram. Int. 2021, 48, 74–81. [Google Scholar] [CrossRef]
- Brahme, N.; Gupta, A.; Prasad Bisen, D.; Kher, R.S.; Dhoble, S.J. Thermoluminescence and mechanoluminescence of Eu doped Y2O3 nanophosphors. Phys. Procedia 2012, 29, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Shin, W.G.; Park, M.; Kim, J.; Joo, S.W.; Cho, I.; Sohn, Y. Photoluminescence imaging of Eu (III) doped Y2O3 nanorods on a Si substrate deposited by an electrospray technique. Thin Solid Films 2014, 565, 293–299. [Google Scholar] [CrossRef]
- Kostyukov, A.I.; Snytnikov, V.N.; Snytnikov, V.N.; Ishchenko, A.V.; Rakhmanova, M.I.; Molokeev, M.S.; Krylov, A.S.; Aleksandrovsky, A.S. Luminescence of monoclinic Y2O3: Eu nanophosphor produced via laser vaporization. Opt. Mater. 2020, 104, 109843. [Google Scholar] [CrossRef]
- Eid, J.; Pierre, A.C.; Baret, G. Preparation and characterization of transparent Eu doped Y2O3 aerogel monoliths, for application in luminescence. J. Non Cryst. Solids 2005, 351, 218–227. [Google Scholar] [CrossRef]
- Lee, M.; Oh, S.; Yi, S. Preparation of Eu-doped Y2O3 luminescent nanoparticles in nonionic reverse microemulsions. J. Colloid Interface Sci. 2000, 226, 65–70. [Google Scholar] [CrossRef]
- Mariscal-Becerra, L.; Vazquez-Arregu ın, R.; Balderas, U.; Carmona-Tellez, S.; Murrieta Sanchez, H.; Falcony, C. Luminescent characteristics of layered yttrium oxide nano-phosphors doped with europium. J. Appl. Phys. 2017, 121, 125111. [Google Scholar] [CrossRef]
- Lamiri, L.; Guerbous, L.; Samah, M.; Boukerika, A.; Ouhenia, S. Structural, morphological and steady state photoluminescence spectroscopy studies of red Eu3+-doped Y2O3 nanophosphors prepared by the sol-gel method. Luminescence 2015, 30, 1336–1343. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Soltani, B.; Amani-Ghadim, A.; Hedayati, B.; Khomami, B.; Joo, S.W. Praseodymium-doped ZnS nanomaterials: Hydrothermal synthesis and characterization with enhanced visible light photocatalytic activity. J. Ind. Eng. Chem. 2016, 34, 41. [Google Scholar] [CrossRef]
- Khataee, A.; Khataee, A.; Fathinia, M.; Hanifehpour, Y.; Joo, S.W. Kinetics and Mechanism of Enhanced Photocatalytic Activity under Visible Light Using Synthesized PrxCd1–xSe Nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 13357. [Google Scholar] [CrossRef]
- Hamnabard, N.; Hanifehpour, Y.; Khomami, B.; Joo, S.W. Synthesis, characterization and photocatalytic performance of Yb-doped CdTe nanoparticles. Mater. Lett. 2015, 145, 253. [Google Scholar] [CrossRef]
- Panwar, S.; Upadhyay, G.K.; Purohit, L.P. Gd-doped ZnO: TiO2 heterogenous nanocomposites for advance oxidation process. Mater. Res. Bull. 2022, 145, 11534. [Google Scholar] [CrossRef]
- Keerthana, S.P.; Yuvakkumar, R.; Ravi, G.; Al-Sehemi, A.G.; VelauthapillaI, D. Synthesis of pure and lanthanum-doped barium ferrite nanoparticles for efficient removal of toxic pollutants. J. Hazard. Mater. 2021, 424, 127604. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Pal, M.; Herrera, M.; Mathew, X. Effect of Eu ion incorporation on the emission behavior of Y2O3 nanophosphors: A detailed study of structural and optical properties. Opt. Mater. 2016, 60, 159–168. [Google Scholar] [CrossRef]
- Bakovets, V.V.; Yushina, I.V.; Antonova, O.V.; Pomelova, T.A. Correction of the band gap of Y2O3: Eu3+ phosphor. Opt. Spectrosc. 2016, 121, 862–866. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, P. Red photoluminescent Eu3+-doped Y2O3 nanospheres for LED-phosphor applications: Synthesis and characterization. Opt. Express 2018, 26, 34820. [Google Scholar] [CrossRef] [PubMed]
- Qipeng, L.; Yanbing, H.; Aiwei, T.; Zhihui, F.; Feng, T.; XiaoJun, L. Synthesis and Characterization of Y2O3: Er3+ Upconversion Materials with Nanoporous Structures. J. Nanosci. Nanotechnol. 2011, 11, 9671–9675. [Google Scholar] [CrossRef]
- Phan, T.; Phan, M.; Vu, N.; Anh, T.; Yu, S.C. Luminescent properties of Eu-doped Y2O3 nanophosphors. Phys. Status Solid A 2004, 201, 2170–2174. [Google Scholar] [CrossRef]
- Daneshvar, H.; Seyed Dorraji, M.S.; Amani-Ghadim, A.R.; Rasoulifard, M.H. Enhanced sonocatalytic performance of ZnTi nano-layered double hydroxide by substitution of Cu (II) cations. Ultrason. Sonochem. 2019, 58, 104632. [Google Scholar] [CrossRef] [PubMed]
- Seyed Dorraji, M.S.; Amani-Ghadim, A.R.; Rasoulifard, M.H.; Daneshvar, H.; Sistani Zadeh Aghdam, B.; Tarighati, A.R.; Hosseini, S.F. Photocatalytic activity of g-C3N4: An empirical kinetic model, optimization by neuro-genetic approach and identification of intermediates. Chem. Eng. Res. Des. 2017, 127, 113–125. [Google Scholar] [CrossRef]
- Alemi, A.; Hanifehpour, Y.; Joo, S.W.; Min, B.-K. Synthesis of novel LnxSb2−xSe3 (Ln: Lu3+, Ho3+, Nd3+) nanomaterials via co-reduction method and investigation of their physical properties. Colloids. Surf. A Physicochem. Eng. Asp. 2011, 390, 142. [Google Scholar] [CrossRef]
- Alemi, A.; Hanifehpour, Y.; Joo, S.W.; Khandar, A.; Morsali, A.; Min, B. Co-reduction synthesis of new LnxSb2−xSe3 (Ln: Nd3+, Lu3+, Ho3+) nanomaterials and investigation of their physical properties. Phys. B 2011, 406, 2801–2806. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Korake, P.V.; Kadam, A.N.; Garadkar, K.M. Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique. J. Rare Earths 2014, 32, 306. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z.; Bhatia, S. Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 2011, 277, 1. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, H.; Wang, L.; Chen, L. Ultrasound-enhanced magnetite catalytic ozonation of tetracycline in water. Chem. Eng. J. 2013, 229, 577. [Google Scholar] [CrossRef]
Chemical Structure | |
---|---|
Color index name | Reactive Blue 19 |
Molecular formula | C22H16N2Na2O11S3 |
Color index number | 219-949-9 |
λmax (nm) | 592 |
Mw (g/mol) | 626.54 |
Element | Line Type | wt% | Atomic % | Factory Standard |
---|---|---|---|---|
O | K series | 55.50 | 69.38 | Yes |
Si | K series | 39.50 | 28.27 | Yes |
Y | L series | 3.88 | 2.21 | Yes |
Eu | M series | 1.12 | 0.14 | Yes |
Total: | 100.00 | 100.00 |
Sample | Band Gap (eV) |
---|---|
Diatom coated with Y2O3 | 4.94 |
diatom coated with 4% Eu-doped Y2O3 | 4.73 |
diatom coated with 6% Eu-doped Y2O3 | 4.64 |
diatom coated with 8% Eu-doped Y2O3 | 4.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanifehpour, Y.; Abdolmaleki, M.; Joo, S.W. Europium-Doped Y2O3-Coated Diatomite Nanomaterials: Hydrothermal Synthesis, Characterization, Optical Study with Enhanced Photocatalytic Performance. Inorganics 2021, 9, 88. https://doi.org/10.3390/inorganics9120088
Hanifehpour Y, Abdolmaleki M, Joo SW. Europium-Doped Y2O3-Coated Diatomite Nanomaterials: Hydrothermal Synthesis, Characterization, Optical Study with Enhanced Photocatalytic Performance. Inorganics. 2021; 9(12):88. https://doi.org/10.3390/inorganics9120088
Chicago/Turabian StyleHanifehpour, Younes, Mehdi Abdolmaleki, and Sang Woo Joo. 2021. "Europium-Doped Y2O3-Coated Diatomite Nanomaterials: Hydrothermal Synthesis, Characterization, Optical Study with Enhanced Photocatalytic Performance" Inorganics 9, no. 12: 88. https://doi.org/10.3390/inorganics9120088
APA StyleHanifehpour, Y., Abdolmaleki, M., & Joo, S. W. (2021). Europium-Doped Y2O3-Coated Diatomite Nanomaterials: Hydrothermal Synthesis, Characterization, Optical Study with Enhanced Photocatalytic Performance. Inorganics, 9(12), 88. https://doi.org/10.3390/inorganics9120088