Crystal Structure and Anti-Proliferative and Mutagenic Evaluation of the Palladium(II) Complex of Deoxyalliin
Abstract
:1. Introduction
2. Results
2.1. Structural Commentary and Supramolecular Features
2.2. Anti-Proliferative Activity
2.3. Determination of Mutagenic Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of the Pd(II) Complex
4.3. Cell Line Culture
4.4. Experimental Protocol
4.5. Single-Crystal X-ray Diffraction Data
4.6. Determination of Mutagenicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. Medical Uses of Silver: History, Myths, and Scientific Evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver Coordination Compounds: A New Horizon in Medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Sadler, P.J.; Sue, R.E. The Chemistry of Gold Drugs. Met.-Based Drugs 1994, 1, 107–144. [Google Scholar] [CrossRef]
- Rosenberg, B.; Vancamp, L.; Trosko, J.E.; Mansour, V.H. Platinum Compounds: A New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef]
- Kelland, Lloyd. The Resurgence of Platinum-Based Cancer Chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Ho, G.Y.; Woodward, N.; Coward, J.I.G. Cisplatin versus Carboplatin: Comparative Review of Therapeutic Management in Solid Malignancies. Crit. Rev. Oncol./Hematol. 2016, 102, 37–46. [Google Scholar] [CrossRef]
- Romani, A.M.P. Cisplatin in Cancer Treatment. Biochem. Pharmacol. 2022, 206, 115323. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest Developments in Metal Complexes as Anticancer Agents. Coord. Chem. Rev. 2022, 452, 214307. [Google Scholar] [CrossRef]
- Kapdi, A.R.; Fairlamb, I.J.S. Anti-Cancer Palladium Complexes: A Focus on PdX2L2, Palladacycles and Related Complexes. Chem. Soc. Rev. 2014, 43, 4751–4777. [Google Scholar] [CrossRef]
- Alam, M.N.; Huq, F. Comprehensive Review on Tumour Active Palladium Compounds and Structure–Activity Relationships. Coord. Chem. Rev. 2016, 316, 36–67. [Google Scholar] [CrossRef]
- Mjos, K.D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114, 4540–4563. [Google Scholar] [CrossRef] [PubMed]
- Tookad|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/tookad (accessed on 22 April 2024).
- Xue, Q.; Zhang, J.; Jiao, J.; Qin, W.; Yang, X. Photodynamic Therapy for Prostate Cancer: Recent Advances, Challenges and Opportunities. Front. Oncol. 2022, 12, 980239. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, B.; Wang, J.; Tan, Y.; Xu, M.; Xu, W.; Lu, H. New Advances into Cisplatin Resistance in Head and Neck Squamous Carcinoma: Mechanisms and Therapeutic Aspects. Biomed. Pharmacother. 2023, 163, 114778. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.D.; Burtness, B.; Le, Q.T.; Ferris, R.L. The Changing Therapeutic Landscape of Head and Neck Cancer. Nat. Rev. Clin. Oncol. 2019, 16, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Ilić, D.R.; Jevtić, V.V.; Radić, G.P.; Arsikin, K.; Ristić, B.; Harhaji-Trajković, L.; Vuković, N.; Sukdolak, S.; Klisurić, O.; Trajković, V.; et al. Synthesis, Characterization and Cytotoxicity of a New Palladium(II) Complex with a Coumarine-Derived Ligand. Eur. J. Med. Chem. 2014, 74, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Pruchnik, H.; Lis, T.; Latocha, M.; Zielińska, A.; Pruchnik, F.P. Palladium(II) Complexes with Tris(2-Carboxyethyl)Phosphine, Structure, Reactions and Cytostatic Activity. J. Inorg. Biochem. 2016, 156, 14–21. [Google Scholar] [CrossRef]
- Da Silva, B.A.O.; Dias, I.S.; Sarto, L.E.; de Gois, E.P.; Torres, C.; de Almeida, E.T.; Gouvêa, C.M.C.P. Cytotoxicity Induced by Newly Synthesized Palladium (II) Complexes Lead to the Death of MCF-7 and MDA-MB-435 Cancer Cell Lines. Adv. Pharm. Bull. 2021, 13, 160–169. [Google Scholar] [CrossRef]
- Sarto, L.E.; Gois, E.P.D.; Andrade, G.G.D.; Almeida, M.S.D.; Freitas, J.T.J.; Júnior, A.D.S.R.; Franco, L.P.; Torres, C.; Almeida, E.T.D.; Gouvêa, C.M.C.P. Anticancer Potential of Palladium(II) Complexes With Schiff Bases Derived from 4-Aminoacetophenone Against Melanoma In Vitro. Anticancer Res. 2019, 39, 6693–6699. [Google Scholar] [CrossRef] [PubMed]
- Manzano, C.M.; Nakahata, D.H.; de Paiva, R.E.F. Revisiting Metallodrugs for the Treatment of Skin Cancers. Coord. Chem. Rev. 2022, 462, 214506. [Google Scholar] [CrossRef]
- Candido, T.Z.; de Paiva, R.E.F.; Figueiredo, M.C.; de Oliveira Coser, L.; Frajácomo, S.C.L.; Abbehausen, C.; Cardinalli, I.A.; Lustri, W.R.; Carvalho, J.E.; Ruiz, A.L.T.G.; et al. Silver Nimesulide Complex in Bacterial Cellulose Membranes as an Innovative Therapeutic Method for Topical Treatment of Skin Squamous Cell Carcinoma. Pharmaceutics 2022, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Corbi, P.P.; Massabni, A.C.; Moreira, A.G.; Medrano, F.J.; Jasiulionis, M.G.; Costa-Neto, C.M. Synthesis, Characterization, and Biological Activity of a New Palladium(II) Complex with Deoxyalliin. Can. J. Chem. 2005, 83, 104–109. [Google Scholar] [CrossRef]
- Corbi, P.P.; Massabni, A.C. 1H-15N NMR Studies of the Complex Bis(S-Allyl-L-Cysteinate)Palladium(II). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 64, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Spera, M.B.M.; Quintão, F.A.; Ferraresi, D.K.D.; Lustri, W.R.; Magalhães, A.; Formiga, A.L.B.; Corbi, P.P. Palladium(II) Complex with S-Allyl-L-Cysteine: New Solid-State NMR Spectroscopic Measurements, Molecular Modeling and Antibacterial Assays. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, I.H.; Mieli, M.J.; Pereira, A.K.; Corbi, P.P.; Resende, F. Evaluation of the Cytotoxicity and Genotoxicological Safety Profile of Bioactive Silver(I) Complexes with Aminoadamantane Ligands. Quim. Nova 2024, 47, e-20240002. [Google Scholar] [CrossRef]
- Jahromi, E.Z.; Divsalar, A.; Saboury, A.A.; Khaleghizadeh, S.; Mansouri-Torshizi, H.; Kostova, I. Palladium Complexes: New Candidates for Anti-Cancer Drugs. J. Iran. Chem. Soc. 2016, 13, 967–989. [Google Scholar] [CrossRef]
- Rais, N.; Ved, A.; Ahmad, R.; Kumar, M.; Deepak Barbhai, M.; Radha; Chandran, D.; Dey, A.; Dhumal, S.; Senapathy, M.; et al. S-Allyl-L-Cysteine—A Garlic Bioactive: Physicochemical Nature, Mechanism, Pharmacokinetics, and Health Promoting Activities. J. Funct. Foods 2023, 107, 105657. [Google Scholar] [CrossRef]
- Xu, Y.; Feng, J.; Zhang, D.; Zhang, B.; Luo, M.; Su, D.; Lin, N. S-Allylcysteine, a Garlic Derivative, Suppresses Proliferation and Induces Apoptosis in Human Ovarian Cancer Cells In Vitro. Acta Pharmacol. Sin. 2014, 35, 267–274. [Google Scholar] [CrossRef]
- Aliwaini, S.; Swarts, A.J.; Blanckenberg, A.; Mapolie, S.; Prince, S. A Novel Binuclear Palladacycle Complex Inhibits Melanoma Growth In Vitro and In Vivo through Apoptosis and Autophagy. Biochem. Pharmacol. 2013, 86, 1650–1663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, H.; Qin, L.; Lin, S. Garlic-derived Compounds: Epigenetic Modulators and Their Antitumor Effects. Phytother. Res. 2024, 38, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, N.; Sharma, M.C. Anticancer Properties of Some Selected Plant Phenolic Compounds: Future Leads for Therapeutic Development. J. Herb. Med. 2023, 42, 100801. [Google Scholar] [CrossRef]
- Zahirović, A.; Žilić, D.; Pavelić, S.K.; Hukić, M.; Muratović, S.; Harej, A.; Kahrović, E. Type of Complex–BSA Binding Forces Affected by Different Coordination Modes of Alliin in Novel Water-Soluble Ruthenium Complexes. New J. Chem. 2019, 43, 5791–5804. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. JNCI J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van De Streek, J.; Wood, P.A. Mercury CSD 2.0—New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
- Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2010. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res./Environ. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Bernstein, L.; Kaldor, J.; McCann, J.; Pike, M.C. An Empirical Approach to the Statistical Analysis of Mutagenesis Data from the Salmonella Test. Mutat. Res./Environ. Mutagen. Relat. Subj. 1982, 97, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/Microsome Mutagenicity Assay. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef] [PubMed]
Bond Lengths (Å) | |||
Pd1—N1 i | 2.042 (3) | N1—C2 | 1.478 (6) |
Pd1—N1 | 2.042 (3) | N1—H1A | 0.80 (4) |
Pd1—S1i | 2.2975 (8) | N1—H1B | 0.88 (5) |
Pd1—S1 | 2.2975 (8) | C1—C2 | 1.533 (5) |
S1—C3 | 1.822 (4) | C2—C3 | 1.520 (5) |
S1—C4 | 1.829 (5) | C4—C5 | 1.485 (6) |
O1—C1 | 1.255 (5) | C5—C6 | 1.318 (8) |
O2—C1 | 1.228 (5) | ||
Bond Angles (°) | |||
N1i—Pd1—N1 | 176.6 (4) | C2—N1—H1B | 109 (3) |
N1i—Pd1—S1 i | 84.30 (9) | Pd1—N1—H1B | 102 (3) |
N1—Pd1—S1 i | 95.73 (9) | H1A—N1—H1B | 115 (5) |
N1i—Pd1—S1 | 95.73 (9) | O2—C1—O1 | 126.1 (4) |
N1—Pd1—S1 | 84.30 (9) | O2—C1—C2 | 117.1 (4) |
S1i—Pd1—S1 | 179.08 (12) | O1—C1—C2 | 116.7 (4) |
C3—S1—C4 | 101.6 (2) | N1—C2—C3 | 109.3 (3) |
C3—S1—Pd1 | 99.81 (12) | N1—C2—C1 | 111.1 (4) |
C4—S1—Pd1 | 105.60 (16) | C3—C2—C1 | 114.7 (3) |
C2—N1—Pd1 | 111.9 (3) | C2—C3—S1 | 111.7 (3) |
C2—N1—H1A | 109 (3) | C5—C4—S1 | 109.2 (3) |
Pd1—N1—H1A | 110 (3) | C6—C5—C4 | 122.9 (5) |
Cell Line | TGI (µmol L−1) | |||
---|---|---|---|---|
Pd-Sac | Doxorubicin | K2PdCl4 | Sac | |
U251 | 357.5 ± 51.2 | >46 | >765 | >1500 |
MCF-7 | 547.6 ± 5.7 | 5.2 ± 1.6 | >765 | >1500 |
NCI-ADR/RES | >586 | >46 | >765 | >1500 |
786-0 | 380 ± 66 | 3.5 ± 2.0 | >765 | >1500 |
NCI-H460 | >586 | >46 | >765 | >1500 |
PC-3 | 155.6 ± 39.1 | 1.5 ± 0.6 | >765 | >1500 |
OVCAR-3 | 296.2 ± 116.3 | 4.6 * | >765 | >1500 |
HT29 | 269.0 ± 80.8 | >46 | >765 | >1500 |
K562 | 231.1 ± 59.0 | 1.7 ± 0.6 | >765 | >1500 |
UACC-62 | 63.5 ± 9.7 | <0.046 | n.t. | n.t. |
SCC15 | 570.7 ± 0.3 | 1.8 ± 0.6 | n.t. | n.t. |
SCC4 | >586 | 3.5 ± 1.2 | n.t. | n.t. |
FaDu | 460.8 ± 86.3 | 5.4 ± 2.3 | n.t. | n.t. |
HaCaT | >586 | 1.4 ± 0.4 | >765 | >1500 |
Treatments | Number of Revertants (M ± SD)/Plate and MI | ||||||||
---|---|---|---|---|---|---|---|---|---|
TA 98 | TA 100 | TA 102 | TA 97a | ||||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | ||
C− | 40 ± 5 | 33 ± 4 | 119 ± 11 | 124 ± 13 | 304 ± 20 | 342 ± 46 | 144 ± 18 | 136 ± 13 | |
C+ a | 880 ± 51 ** | 1410 ± 77 ** | 1272 ± 102 ** | 1458 ± 89 ** | 1547 ± 91 ** | 1349 ± 133 ** | 1472 ± 78 ** | 1160 ± 114 ** | |
Pd-sac (µg/plate) | 25 | 50 ± 6 (1.24) | 37 ± 2 (1.12) | 143 ± 17 (1.20) | 144 ± 29 (1.16) | 350 ± 17 (1.15) | 381 ± 25 (1.12) | 158 ± 25 (1.10) | 143 ± 16 (1.05) |
50 | 47 ± 1 (1.16) | 31 ± 5 (0.94) | 151 ± 22 (1.26) | 139 ± 13 (1.12) | 373 ± 10 (1.23) | 398 ± 37 (1.16) | 162 ± 10 (1.13) | 148 ± 26 (1.08) | |
100 | 50 ± 7 (1.25) | 33 ± 6 (1.00) | 146 ± 16 (1.23) | 133 ± 10 (1.07) | 375 ± 26 (1.23) | 332 ± 30 (0.97) | 177 ± 14 (1.23) | 129 ± 20 (0.94) | |
150 | 42 ± 2 (1.04) | 34 ± 1 (1.02) | 133 ± 27 (1.12) | 150 ± 8 (1.21) | 311 ± 24 (1.02) | 275 ± 19 (0.80) | 133 ± 18 (0.92) | 135 ± 14 (0.99) | |
200 | 34 ± 8 (0.85) | 31 ± 2 (0.92) | 108 ± 15 (0.90) | 104 ± 16 (0.83) | 272 ± 38 (0.89) | 282 ± 21 (0.83) | 106 ± 27 (0.74) | 99 ± 19 (0.72) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candido, T.Z.; Quintanilha, M.M.; Schimitd, B.A.; Simoni, D.d.A.; Nakahata, D.H.; de Paiva, R.E.F.; Cerqueira, I.H.; Resende, F.A.; Carvalho, J.E.; Ruiz, A.L.T.G.; et al. Crystal Structure and Anti-Proliferative and Mutagenic Evaluation of the Palladium(II) Complex of Deoxyalliin. Inorganics 2024, 12, 194. https://doi.org/10.3390/inorganics12070194
Candido TZ, Quintanilha MM, Schimitd BA, Simoni DdA, Nakahata DH, de Paiva REF, Cerqueira IH, Resende FA, Carvalho JE, Ruiz ALTG, et al. Crystal Structure and Anti-Proliferative and Mutagenic Evaluation of the Palladium(II) Complex of Deoxyalliin. Inorganics. 2024; 12(7):194. https://doi.org/10.3390/inorganics12070194
Chicago/Turabian StyleCandido, Tuany Zambroti, Mariana Mazzo Quintanilha, Bianca Alves Schimitd, Déborah de Alencar Simoni, Douglas Hideki Nakahata, Raphael Enoque Ferraz de Paiva, Igor Henrique Cerqueira, Flávia Aparecida Resende, João Ernesto Carvalho, Ana Lucia Tasca Gois Ruiz, and et al. 2024. "Crystal Structure and Anti-Proliferative and Mutagenic Evaluation of the Palladium(II) Complex of Deoxyalliin" Inorganics 12, no. 7: 194. https://doi.org/10.3390/inorganics12070194
APA StyleCandido, T. Z., Quintanilha, M. M., Schimitd, B. A., Simoni, D. d. A., Nakahata, D. H., de Paiva, R. E. F., Cerqueira, I. H., Resende, F. A., Carvalho, J. E., Ruiz, A. L. T. G., Lima, C. S. P., & Corbi, P. P. (2024). Crystal Structure and Anti-Proliferative and Mutagenic Evaluation of the Palladium(II) Complex of Deoxyalliin. Inorganics, 12(7), 194. https://doi.org/10.3390/inorganics12070194