Supramolecular Frameworks and a Luminescent Coordination Polymer from New β-Diketone/Tetrazole Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.1.1. Synthesis of the Ligands H3L1 and H2L2
2.1.2. Reactivity of H3L1 and H2L2 with Metal Ions
2.1.3. Synthesis and Characterization of the 2D Coordination Polymer [ZnL2(DMSO)] (2)
2.2. Crystal Structure Descriptions
2.2.1. Crystal Structure of 3H3L1·2DMSO·4H2O
2.2.2. Crystal Structure of H2L2
2.2.3. Crystal Structure of [NEt4]3[Fe(HL1)3]·3THF (1)
2.2.4. Crystal Structure of [ZnL2(DMSO)] (2)
3. Materials and Methods
3.1. Preparation of the Ligands and of the Complexes
3.1.1. Synthesis of H3L1
3.1.2. Synthesis of H2L2
3.1.3. Crystallization of [NEt4]3[Fe(HL1)3]·3THF (1)
3.1.4. Synthesis of [ZnL2(DMSO)] (2)
3.2. Crystal Structure Analyses
3.2.1. Crystal Data for 3H3L1·2DMSO·4H2O
3.2.2. Crystal Data for H2L2
3.2.3. Crystal Data for [NEt4]3[Fe(HL1)3]·3THF (1)
3.2.4. Crystal Data for [ZnL2(DMSO)] (2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715. [Google Scholar] [CrossRef] [Green Version]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Coordination polymers. CrystEngComm 2012, 14, 3001. [Google Scholar] [CrossRef] [Green Version]
- Yaghi, O.M.; Kalmutzki, M.J.; Diercks, C.S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Batten, S.R.; Neville, S.M.; Turner, D.R. Coordination Polymers: Design, Analysis and Application; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kaskel, S. (Ed.) The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- Öhrström, L.; Amombo Noa, F.M. Metal-Organic Frameworks; American Chemical Society: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Ye, Y.; Xian, S.; Cui, H.; Tan, K.; Gong, L.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P.C.; et al. Metal–organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108. [Google Scholar] [CrossRef]
- Yang, D.; Gates, B.C. Catalysis by metal organic frameworks: Perspective and suggestions for future research. ACS Catal. 2019, 9, 1779. [Google Scholar] [CrossRef]
- Farrusseng, D.; Aguado, S.; Pinel, C. MOFs in catalysis. Angew. Chem. Int. Ed. 2009, 48, 7502. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815. [Google Scholar] [CrossRef] [Green Version]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232. [Google Scholar] [CrossRef]
- Ding, M.; Flaig, R.W.; Jiang, H.L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783. [Google Scholar] [CrossRef]
- Rojas, S.; Horcajada, P. Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 2020, 120, 8378. [Google Scholar] [CrossRef]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92. [Google Scholar] [CrossRef]
- Kim, H.; Yang, S.; Rao, S.R.; Narayanan, S.; Kapustin, E.A.; Furukawa, H.; Umans, A.S.; Yaghi, O.M.; Wang, E.N. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 2017, 356, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Metal azolate frameworks: From crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001. [Google Scholar] [CrossRef] [PubMed]
- Masciocchi, N.; Galli, S.; Colombo, V.; Maspero, A.; Palmisano, G.; Seyyedi, B.; Lamberti, C.; Bordiga, S. Cubic octanuclear Ni(II) clusters in highly porous polypyrazolyl-based materials. J. Am. Chem. Soc. 2010, 132, 7902. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Lv, X.-L.; Feng, D.; Li, J.; Chen, S.; Sun, J.; Song, L.; Xie, Y.; Li, J.-R.; Zhou, H.-C. Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance. J. Am. Chem. Soc. 2016, 138, 914. [Google Scholar] [CrossRef]
- Ostrovskii, V.A.; Trifonov, R.E.; Popova, E.A. Medicinal chemistry of tetrazoles. Russ. Chem. Bull. 2012, 61, 768. [Google Scholar] [CrossRef]
- Frija, L.M.T.; Ismael, A.; Cristiano, M.L.S. Photochemical transformations of tetrazole derivatives: Applications in organic synthesis. Molecules 2010, 15, 3757. [Google Scholar] [CrossRef] [Green Version]
- Fischer, D.; Klapötke, T.M.; Stierstorfer, J. 1,5-Di(nitramino)tetrazole: High sensitivity and superior explosive performance. Angew. Chem. Int. Ed. 2015, 54, 10299. [Google Scholar] [CrossRef]
- Zhao, H.; Qu, Z.-R.; Ye, H.-Y.; Xiong, R.-G. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chem. Soc. Rev. 2008, 37, 84. [Google Scholar] [CrossRef]
- Dinca, M.; Yu, A.F.; Long, J.R. Microporous metal−organic frameworks incorporating 1,4-benzeneditetrazolate: Syntheses, structures, and hydrogen storage properties. J. Am. Chem. Soc. 2006, 128, 8904. [Google Scholar] [CrossRef]
- Tabacaru, A.; Pettinari, C.; Galli, S. Coordination polymers and metal–organic frameworks built up with poly(tetrazolate) ligands. Coord. Chem. Rev. 2018, 372, 1. [Google Scholar] [CrossRef]
- Demko, Z.P.; Sharpless, K.B. Preparation of 5-substituted 1-tetrazoles from nitriles in water. J. Org. Chem. 2001, 66, 7945. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Zhou, X.-P.; Zhang, D.-X.; Li, D. Luminescent mechanochromic porous coordination polymers. Chem.—Eur. J. 2014, 20, 644. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Wu, M.-F.; Zheng, F.-K.; Wang, S.-H.; Zhang, M.-J.; Chen, J.; Xiao, Y.; Guo, G.-C.; Wua, A.-Q. Zn(II) coordination compound based on in situ generated 3-(5H-tetrazol)benzaldehyde with diverse modes: Hydrothermal synthesis, crystal structures and photoluminescent properties. CrystEngComm 2013, 15, 7038. [Google Scholar] [CrossRef]
- Li, N.; Chang, Z.; Huang, H.; Feng, R.; He, W.-W.; Zhang, M.; Madden, D.G.; Zaworotko, M.J.; Bu, X.-H. Specific K+ binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption. Small 2019, 15, 1900426. [Google Scholar] [CrossRef]
- Ji, L.-Q.; Yang, J.; Zhang, Z.-Y.; Qian, Y.; Su, Z.; Han, M.; Liu, H.-K. Enhanced catalytic performance for oxygen reduction reaction derived from nitrogen-rich tetrazolate-based heterometallic metal–organic frameworks. Cryst. Growth Des. 2019, 19, 2991. [Google Scholar] [CrossRef]
- Nunes, M.S.; Gomes, D.M.; Gomes, A.C.; Neves, P.; Mendes, R.F.; Paz, F.A.A.; Lopes, A.D.; Valente, A.A.; Gonçalves, I.S.; Pillinger, M. A 5-(2-pyridyl)tetrazolate complex of molybdenum(VI), its structure, and transformation to a molybdenum oxide-based hybrid heterogeneous catalyst for the epoxidation of olefins. Catalysts 2021, 11, 1407. [Google Scholar] [CrossRef]
- Carlucci, L.; Ciani, G.; Maggini, S.; Proserpio, D.M.; Visconti, M. Heterometallic modular metal–organic 3d frameworks assembled via new tris-β-diketonate metalloligands: Nanoporous materials for anion exchange and scaffolding of selected anionic guests. Chem.—Eur. J. 2010, 16, 12328. [Google Scholar] [CrossRef]
- Visconti, M.; Maggini, S.; Ciani, G.; Mercandelli, P.; del Secco, B.; Prodi, L.; Sgarzi, M.; Zaccheroni, N.; Carlucci, L. New lanthanide metalloligands and their use for the assembly of Ln−Ag bimetallic coordination frameworks: Stepwise modular synthesis, structural characterization, and optical properties. Cryst. Growth Des. 2019, 19, 5376. [Google Scholar] [CrossRef]
- Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. TBAF-catalyzed synthesis of 5-substituted 1-tetrazoles under solventless conditions. J. Org. Chem. 2004, 69, 2896. [Google Scholar] [CrossRef]
- Rasmussen, S.; Tunnicliff, D.D.; Brattain, R.R. Infrared and Ultraviolet spectroscopic studies on ketones. J. Am. Chem. Soc. 1949, 71, 1068. [Google Scholar] [CrossRef]
- Mosalkova, A.P.; Voitekhovich, S.V.; Lyakhov, A.S.; Ivashkevich, L.S.; Gaponik, P.N.; Ivashkevich, O.A. Direct Synthesis and characterization of new copper(II) and zinc(II) 5-R-tetrazolato complexes [R = Me, Ph, 4-Py] with ethylenediamine and DMSO as coligands. Z. Anorg. Allg. Chem. 2012, 638, 103. [Google Scholar] [CrossRef]
- Meza-Morales, W.; Estévez-Carmona, M.M.; Alvarez-Ricardo, Y.; Obregón-Mendoza, M.A.; Cassani, J.; Ramírez-Apan, M.T.; Escobedo-Martínez, C.; Soriano-García, M.; Reynolds, W.F.; Enríquez, R.G. Full structural characterization of homoleptic complexes of diacetylcurcumin with Mg, Zn, Cu, and Mn: Cisplatin-level cytotoxicity in vitro with minimal acute toxicity in vivo. Molecules 2019, 24, 1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, P.E. Structural studies of β-diketones and their implications on biological effects. Pharmaceuticals 2021, 14, 1189. [Google Scholar] [CrossRef] [PubMed]
- Calligaris, M.; Carugo, O. Structure and bonding in metal sulfoxide complexes. Coord. Chem. Rev. 1996, 153, 83. [Google Scholar] [CrossRef]
- Calligaris, M. Structure and bonding in metal sulfoxide complexes: An update. Coord. Chem. Rev. 2004, 248, 351. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Fu, Z.-H.; Xu, G. Metal–organic framework nanosheets: Preparation and applications. Coord. Chem. Rev. 2019, 388, 79. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasi, D.; Mercandelli, P.; Carlucci, L. Supramolecular Frameworks and a Luminescent Coordination Polymer from New β-Diketone/Tetrazole Ligands. Inorganics 2022, 10, 55. https://doi.org/10.3390/inorganics10040055
Blasi D, Mercandelli P, Carlucci L. Supramolecular Frameworks and a Luminescent Coordination Polymer from New β-Diketone/Tetrazole Ligands. Inorganics. 2022; 10(4):55. https://doi.org/10.3390/inorganics10040055
Chicago/Turabian StyleBlasi, Delia, Pierluigi Mercandelli, and Lucia Carlucci. 2022. "Supramolecular Frameworks and a Luminescent Coordination Polymer from New β-Diketone/Tetrazole Ligands" Inorganics 10, no. 4: 55. https://doi.org/10.3390/inorganics10040055
APA StyleBlasi, D., Mercandelli, P., & Carlucci, L. (2022). Supramolecular Frameworks and a Luminescent Coordination Polymer from New β-Diketone/Tetrazole Ligands. Inorganics, 10(4), 55. https://doi.org/10.3390/inorganics10040055