Experience of Using DLS to Study the Particle Sizes of Active Component in the Catalysts Based on the Oxide and Non-Oxide Supports
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sample Preparation
3.1.1. Supported Ag Nanoparticles on the Different Supports
3.1.2. Supported Pt Nanoparticles on the Different Supports
3.1.3. Supported Ru, Pd and Pt Nanoparticles on the Polymer Support
3.2. Selective Support Dissolution Procedure (STS)
3.3. High-Resolution Transmission Electron Microscopy (HR-TEM)
3.4. X-ray Diffraction (XRD)
3.5. UV–Vis Spectroscopy
3.6. Dynamic Light Scattering (DLS)
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, B.; Wu, F.; Zhang, Q.; Chu, X.; Wang, Z.; Huang, X.; Li, J.; Yao, C.; Zhou, N.; Shen, J. Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. J. Colloid Interface Sci. 2021, 584, 505–519. [Google Scholar] [CrossRef]
- Antolini, E. Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl. Catal. B Environ. 2016, 181, 298–313. [Google Scholar] [CrossRef]
- Shimura, K.; Fujitani, T. Effects of rhodium catalyst support and particle size on dry reforming of methane at moderate temperatures. Mol. Catal. 2021, 509, 111623. [Google Scholar] [CrossRef]
- Lu, S.; Yang, H.; Zhou, Z.; Zhong, L.; Li, S.; Gao, P.; Sun, Y. Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts. Chin. J. Catal. 2021, 42, 2038–2048. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, P.; Xu, W.; Hensen, E.J.M. Particle size and crystal phase effects in Fischer-Tropsch catalysts. Engineering 2017, 3, 467–476. [Google Scholar] [CrossRef]
- Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166. [Google Scholar] [CrossRef]
- Hughes, R. Deactivation of Catalyst; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Bergeret, G.; Gallezot, P. Particle size and dispersion measurements. Handb. Heterog. Catal. 2008, 2, 738–765. [Google Scholar]
- Matyi, R.J.; Schwartz, L.H.; Butt, J.B. Particle size, particle size distribution and related measurements of supported metal catalysts. Catal. Rev. Sci. Eng. 1987, 29, 41–99. [Google Scholar] [CrossRef]
- Wimmer, A.; Urstoeger, A.; Hinke, T.; Aust, M.; Altmann, P.J.; Schuster, M. Separating dissolved silver from nanoparticulate silver is the key: Improved cloud-point-extraction hyphenated to single particle ICP-MS for comprehensive analysis of silver-based nanoparticles in real environmental samples down to single-digit nm particle sizes. Anal. Chim. Acta 2021, 1150, 238198. [Google Scholar]
- Yakovlev, I.V.; Yakushkin, S.S.; Kazakova, M.A.; Trukhan, S.N.; Volkova, Z.N.; Gerashchenko, A.P.; Andreev, A.S.; Ishchenko, A.V.; Martyanov, O.N.; Lapina, O.B.; et al. Superparamagnetic behaviour of metallic Co nanoparticles according to variable temperature magnetic resonance. Phys. Chem. Chem. Phys. 2021, 23, 2723–2730. [Google Scholar] [CrossRef]
- Geiss, O.; Cascio, C.; Gilliland, D.; Franchini, F.; Barrero-Moreno, J. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors. J. Chromatogr. A 2013, 1321, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.C. The determination of log normal particle size distributions by dynamic light scattering. J. Colloid Interface Sci. 1987, 117, 187–192. [Google Scholar] [CrossRef]
- Hassan, P.A.; Rana, S.; Verma, G. Making sense of brownian motion: Colloid characterization by dynamic light scattering. Langmuir 2015, 31, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V. Dynamic light scattering based microelectrophoresis: Main prospects and limitations. J. Dispers. Sci. Technol. 2012, 33, 1762–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieckmann, Y.; Colfen, H.; Hofmann, H.; Petri-Fink, A. Particle size distribution measurements of manganese-doped ZnS nanoparticles. Anal. Chem. 2009, 81, 3889–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, T.G.F.; Ciminelli, V.S.T.; Mohallem, N.D.S. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. Conf. Ser. 2016, 733, 012039. [Google Scholar] [CrossRef] [Green Version]
- Fissan, H.; Ristig, S.; Kaminski, H.; Asbach, C.; Epple, M. Comparison of different characterization method for nanoparticle dispersions before and after aerosolization. Anal. Methods 2014, 6, 7324–7334. [Google Scholar] [CrossRef] [Green Version]
- Beketov, I.V.; Safronov, A.P.; Medvedev, A.I.; Alonso, J.; Kurlyandskaya, G.V.; Bhagat, S.M. Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids. AIP Adv. 2012, 2, 022154. [Google Scholar] [CrossRef] [Green Version]
- Mamani, J.B.; Costa-Filho, A.J.; Cornejo, D.R.; Vieira, E.D.; Gamarra, L.F. Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Mater. Charact. 2013, 81, 28–36. [Google Scholar] [CrossRef]
- Nandanwar, S.U.; Chakraborty, M. Synthesis of Colloidal CuO/γ-Al2O3 by Microemulsion and Its Catalytic Reduction of Aromatic Nitro Compounds. Chin. J. Catal. 2012, 33, 1532–1541. [Google Scholar] [CrossRef]
- Kristl, M.; Gyergyek, S.; Škapin, S.D.; Kristl, J. Solvent-free mechanochemical synthesis and characterization of nickel tellurides with various stoichiometries: NiTe, NiTe2 and Ni2Te. Nanomaterials 2021, 11, 1959. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.E.; Sugden, M.; Litchfield, R.E.; Hutt, D.A.; Mason, T.J.; Cobley, A.J. Ultrasound assisted dispersal of a copper nanopowder for electroless copper activation. Ultrason. Sonochem. 2016, 29, 428–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayani, H.; Arayapurath, H.; Shukla, S. Using Fenton-reaction as a novel approach to enhance the photocatalytic activity of TiO2-γ-Fe2O3 magnetic photocatalyst undergoing photo-dissolution process without silica interlayer. Catal. Lett. 2013, 143, 807–816. [Google Scholar] [CrossRef]
- Larichev, Y.V. Application DLS for metal nanoparticles size determination in supported catalysts. Chem. Pap. 2021, 75, 2059–2066. [Google Scholar] [CrossRef]
- Larichev, Y.V. Small angle X-ray scattering study for supported catalysts: From solids to sols. Nano-Struct. Nano-Objects 2021, 25, 100647. [Google Scholar] [CrossRef]
- Larichev, Y.V. Development of small-angle X-ray scattering methods for analysis of supported catalysts and nanocomposites. Kinet. Catal. 2021, 62, 820–828. [Google Scholar] [CrossRef]
- Larichev, Y.V. Dynamic light scattering for studying supported metal catalysts. Kinet. Catal. 2021, 62, 528–535. [Google Scholar] [CrossRef]
- Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 2014, 139, 4855–4861. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Abushammala, H.; Mao, J. A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium ionic liquids. Polymers 2020, 12, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moud, A.A.; Arjmand, M.; Liu, J.; Yang, Y.; Sanati-Nezhad, A.; Hejazi, S.H. Cellulose nanocrystal structure in the presence of salts. Cellulose 2019, 26, 9387–9401. [Google Scholar] [CrossRef]
- Larichev, Y.V. Extended possibilities of analysis for supported metal catalysts and nanocomposites by dynamic light scattering. Kinet. Catal. 2022, 63, 599–605. [Google Scholar] [CrossRef]
- Lamsal, R.P.; Hineman, A.; Stephan, C.; Tahmasebi, S.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G.; Beauchemin, D. Characterization of platinum nanoparticles for fuel cell applications by single particle inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2020, 1139, 36–41. [Google Scholar] [CrossRef]
- De la Calle, I.; Menta, M.; Klein, M.; Séby, F. Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES). Talanta 2017, 171, 291–306. [Google Scholar] [CrossRef]
- Bi, X.; Lee, S.; Ranville, J.F.; Sattigeri, P.; Spanias, A.; Herckes, P.; Westerhoff, P. Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm. J. Anal. At. Spectrom. 2014, 29, 1630–1639. [Google Scholar] [CrossRef]
- Bocca, B.; Battistini, B.; Petrucci, F. Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFF-MALS-UV-ICP-MS in human samples used for biomonitoring. Talanta 2020, 220, 121404. [Google Scholar] [CrossRef]
- Lamsal, R.P.; Houache, M.S.E.; Williams, A.; Baranova, E.; Jerkiewicz, G.; Beauchemin, D. Single particle inductively coupled plasma mass spectrometry with and without flow injection for the characterization of nickel nanoparticles. Anal. Chim. Acta 2020, 1120, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Ng, W.B.; Bernt, W.; Cho, N.J. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci. Rep. 2019, 9, 2639. [Google Scholar] [CrossRef] [Green Version]
- Bannon, M.S.; Ruiz, A.L.; Reyes, K.C.; Marquez, M.; Wallizadeh, Z.; Savarmand, M.; LaPres, C.A.; Lahann, J.; McEnnis, K. Nanoparticle tracking analysis of polymer nanoparticles in blood plasma. Part. Part. Syst. Charact. 2021, 38, 2100016. [Google Scholar] [CrossRef]
- Sulman, M.; Matveeva, V.; Salnikova, K.; Larichev, Y.; Mikhailov, S.; Bykov, A.; Demidenko, G.; Sidorov, A.; Sulman, E. Catalytic performance of Ru/polymer catalyst in the hydrogenation of furfural to furfuryl alcohol. Chem. Eng. Trans. 2020, 81, 1231–1236. [Google Scholar]
- Salnikova, K.E.; Larichev, Y.V.; Sulman, E.M.; Bykov, A.V.; Sidorov, A.I.; Demidenko, G.N.; Sulman, M.G.; Bronstein, L.M.; Matveeva, V.G. Selective hydrogenation of biomass-derived furfural: Enhanced catalytic performance of Pd-Cu alloy nanoparticles in porous polymer. ChemPlusChem 2020, 85, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Salnikova, K.E.; Matveeva, V.G.; Larichev, Y.V.; Bykov, A.V.; Demidenko, G.N.; Shkileva, I.P.; Sulman, M.G. The liquid phase catalytic hydrogenation of furfural to furfuryl alcohol. Catal. Today 2019, 329, 142–148. [Google Scholar] [CrossRef]
- Soft Scientific, DynaLS—Software for Data Analysis in Photon Correlation Spectroscopy. Available online: http://www.softscientific.com/science/WhitePapers/dynals1/dynals100.htm (accessed on 6 December 2022).
Samples | <dl>, nm | <dm>, nm | <d(XRD)>, nm | <d6/5>, nm | <d(DLS)>, nm |
---|---|---|---|---|---|
Ag/γ-Al2O3 | 3.2 ± 2.2 | 12.5 | 7.2 | 19.7 | 20.8 ± 3.8 |
Ag/cellulose | 5.0 ± 3.5 | 18.1 | 13.1 | 28.0 | 32.6 ± 2.9 |
Ag/g-C3N4 | 8.3 ± 3.8 | 15.0 | 16.5 | 20.2 | 22.1 ± 2.5 |
Samples | <dl>, nm | <dm>, nm | <d(XRD)>, nm | <d6/5>, nm | <d(DLS)>, nm |
---|---|---|---|---|---|
Pt/C-1 | 3.5 ± 2.3 | 14.8 | 8.1 | 21.4 | 26.6 ± 6.8 |
Pt/C-2 | 2.7 ± 1.1 | 4.4 | <3.0 | 5.6 | 8.8 ± 2.7 |
Pt/SiO2-1 | 4.3 ± 1.8 | 7.4 | 5.2 | 10.3 | 11.3 ± 1.7 |
Pt/SiO2-2 | 3.4 ± 1.4 | 5.7 | <3.0 | 8.7 | 10.8 ± 2.3 |
Pt/TiO2-1 | 10.2 ± 4.3 | 16.0 | 18.0 | 19.8 | 26.6 ± 3.4 |
Pt/TiO2-2 | 8.0 ± 3.9 | 13.8 | 15.2 | 17.9 | 24.2 ± 3.8 |
Samples | <dl>, nm | <dm>, nm | <d(XRD)>, nm | <d6/5>, nm | <d(DLS)>, nm |
---|---|---|---|---|---|
Pd/HPS | 5.3 ± 2.3 | 8.1 | 6.1 | 10.7 | 11.4 ± 1.8 |
Ru/HPS | 3.2 ± 1.9 | 8.8 | 9.0 | 14.8 | 20.1 ± 5.8 |
Pt/HPS | 5.5 ± 3.4 | 11.8 | 7.1 | 15.5 | 16.1 ± 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larichev, Y.V. Experience of Using DLS to Study the Particle Sizes of Active Component in the Catalysts Based on the Oxide and Non-Oxide Supports. Inorganics 2022, 10, 248. https://doi.org/10.3390/inorganics10120248
Larichev YV. Experience of Using DLS to Study the Particle Sizes of Active Component in the Catalysts Based on the Oxide and Non-Oxide Supports. Inorganics. 2022; 10(12):248. https://doi.org/10.3390/inorganics10120248
Chicago/Turabian StyleLarichev, Yurii V. 2022. "Experience of Using DLS to Study the Particle Sizes of Active Component in the Catalysts Based on the Oxide and Non-Oxide Supports" Inorganics 10, no. 12: 248. https://doi.org/10.3390/inorganics10120248
APA StyleLarichev, Y. V. (2022). Experience of Using DLS to Study the Particle Sizes of Active Component in the Catalysts Based on the Oxide and Non-Oxide Supports. Inorganics, 10(12), 248. https://doi.org/10.3390/inorganics10120248