Perfect Solar Absorber with Extremely Low Infrared Emissivity
Abstract
:1. Introduction
2. Model and Methods
3. Results and Discussion
3.1. Nearly Perfect Absorption of Our Absorber for Solar Energy Harvesting
3.2. Underlying Mechanisms of the Perfect Absorption of Solar Energy
3.3. Emission Suppression in Mid–Infrared Region of the Absorber
3.4. Effects of Materials on Absorptance of the Absorber
3.5. Effects of Geometric Parameters on the Absorption Properties of the Absorbers
3.6. Polarization Independence of the Absorber
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Romero, M.; Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 2012, 5, 9234–9245. [Google Scholar] [CrossRef]
- Eliasson, J. The rising pressure of global water shortages. Nature 2015, 517, 6. [Google Scholar] [CrossRef]
- Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J.T.; Westfall, L. International Energy Outlook 2016 with Projections to 2040; Office of Energy Analysis: Washington, DC, USA, 2016. [Google Scholar]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non–CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Wang, Z.; Quan, X.; Yao, W.; Wang, L.; Cheng, P. Plasma resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a pulsed laser beam. Int. Commun. Heat Mass Transfer 2016, 72, 90–94. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.M.; Cheng, P. Natural anisotropic nanoparticles with a broad absorption spectrum for solar energy harvesting. Int. Commun. Heat Mass Transfer 2018, 96, 109–113. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.M.; Quan, X.; Cheng, P. A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies. Int. J. Heat Mass Transfer 2018, 116, 825–832. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, P.; Qi, G.; Zhang, Z.M.; Cheng, P. An experimental study of a nearly perfect absorber made from a natural hyperbolic material for harvesting solar energy. J. Appl. Phys. 2020, 127, 233102. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Aman, M.M.; Solangi, K.H.; Hossain, M.S.; Badarudin, A.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.; Kazi, S.N. A review of safety, health and environmental (SHE) issues of solar energy system. Renew. Sustain. Energ. Rev. 2015, 41, 1190–1204. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Gittleman, J.I.; Sichel, E.K.; Lehmann, H.W.; Widmer, R. Textured silicon: A selective absorber for solar thermal conversion. Appl. Phys. Lett. 1979, 35, 742–744. [Google Scholar] [CrossRef]
- Liang, Q.; Yin, Q.; Chen, L.; Wang, Z.; Chen, X. Perfect spectrally selective solar absorber with dielectric filled fishnet tungsten grating for solar energy harvesting. Sol. Energy Mater. Sol. Cells 2020, 215, 110664. [Google Scholar] [CrossRef]
- Barrera, E.; González, I.; Viveros, T. A new cobalt oxide electrodeposit bath for solar absorbers. Sol. Energy Mater. Sol. Cells 1998, 51, 69–82. [Google Scholar] [CrossRef]
- Farooq, M.; Green, A.A.; Hutchins, M.G. High performance sputtered Ni:SiO2 composite solar absorber surfaces. Sol. Energy Mater. Sol. Cells 1998, 54, 67–73. [Google Scholar] [CrossRef]
- Wang, Z.; Quan, X.; Zhang, Z.; Cheng, P. Optical absorption of carbon–gold core–shell nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 2018, 205, 291–298. [Google Scholar] [CrossRef]
- Chen, L.; Duan, G.; Zhang, C.; Cheng, P.; Wang, Z. 3D printed hydrogel for soft thermo–responsive smart window. Int. J. Extreme Manuf. 2022, 4, 025302. [Google Scholar] [CrossRef]
- Zhan, Z.; Chen, L.; Duan, H.; Chen, Y.; He, M.; Wang, Z. 3D printed ultra–fast photothermal responsive shape memory hydrogel for microrobots. Int. J. Extreme Manuf. 2021, 4, 015302. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, Z.; Chen, L.; Duan, G.; Cheng, P.; Kong, H.; Chen, Y.; Duan, H. 3D–printed bionic solar evaporator. Sol. RRL 2022, 6, 2101063. [Google Scholar] [CrossRef]
- Veselago, V.G. Reviews of topical problems: The electrodynamics of substances with simultaneously negative values of\epsilon and μ. Sov. Phys. Usp. 1968, 10, R04. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub–diffraction–limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Chen, H.; Chan, C.T.; Sheng, P. Transformation optics and metamaterials. Nat. Mater. 2010, 9, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef]
- Lochbaum, A.; Dorodnyy, A.; Koch, U.; Koepfli, S.M.; Volk, S.; Fedoryshyn, Y.; Wood, V.; Leuthold, J. Compact mid–infrared gas sensing enabled by an all–metamaterial design. Nano Lett. 2020, 20, 4169–4176. [Google Scholar] [CrossRef]
- Zhao, F.; Lin, J.; Lei, Z.; Yi, Z.; Qin, F.; Zhang, J.; Liu, L.; Wu, X.; Yang, W.; Wu, P. Realization of 18.97% theoretical efficiency of 0.9 μm thick c–Si/ZnO heterojunction ultrathin–film solar cells via surface plasmon resonance enhancement. Phys. Chem. Chem. Phys. 2022, 24, 4871–4880. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Luo, Y.; Zhang, J.; Yi, Z.; Wu, X.; Cheng, S.; Yang, W.; Yu, Y.; Wu, P. A four–band and polarization–independent BDS–based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 2021, 23, 26864–26873. [Google Scholar] [CrossRef]
- Zhou, F.; Qin, F.; Yi, Z.; Yao, W.; Liu, Z.; Wu, X.; Wu, P. Ultra–wideband and wide–angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 2021, 23, 17041–17048. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, P. Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials. Int. J. Heat Mass Transfer 2019, 140, 453–482. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.M.; Quan, X.; Cheng, P. A perfect absorber design using a natural hyperbolic material for harvesting solar energy. Sol. Energy 2018, 159, 329–336. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, S.; Yu, X. Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide. Opt. Commun. 2021, 501, 127358. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, Z.; Burkhard, G.F.; Hsu, C. –M.; Connor, S.T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, J.; Guo, J.; Zhang, B.; Buchwald, W.; Soref, R. Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 2012, 37, 371–373. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Chen, X.; Hao, J.; Yan, M.; Qiu, M. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express 2011, 19, 14726–14734. [Google Scholar] [CrossRef] [PubMed]
- Sondergaard, T.; Novikov, S.M.; Holmgaard, T.; Eriksen, R.L.; Beermann, J.; Han, Z.; Pedersen, K.; Bozhevolnyi, S.I. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra–sharp convex grooves. Nat. Commun. 2012, 3, 969. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.; Le, K.Q.; Mattiucci, N.; D’Aguanno, G.; Alù, A. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys. Rev. B 2013, 87, 205112. [Google Scholar] [CrossRef]
- Patel, S.K.; Charola, S.; Jani, C.; Ladumor, M.; Parmar, J.; Guo, T. Graphene–based highly efficient and broadband solar absorber. Opt. Mater. 2019, 96, 109330. [Google Scholar] [CrossRef]
- Katrodiya, D.; Jani, C.; Sorathiya, V.; Patel, S.K. Metasurface based broadband solar absorber. Opt. Mater. 2019, 89, 34–41. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, G.; Duan, H. Optimization of the perfect absorber for solar energy harvesting based on the cone–like nanostructures. AIMS Energy 2021, 9, 714–726. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Self–assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Chen, X.; Yi, Z.; Yao, W.; Yang, H.; Tang, Y.; Yi, Y.; Li, H.; Yi, Y. Ultra–broadband and wide–angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater. Sol. Cells 2020, 211, 110535. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Duan, G.; Duan, H.; Fang, L. Ultrahigh solar absorption in metamaterials with electric and magnetic polaritons enabled by multiple materials. Int. J. Heat Mass Transfer 2022, 185, 122355. [Google Scholar] [CrossRef]
- Liu, Z.; Duan, G.; Duan, H.; Wang, Z. Nearly perfect absorption of solar energy by coherent of electric and magnetic polaritons. Sol. Energy Mater. Sol. Cells 2022, 240, 111688. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Esslinger, M.; Vogelgesang, R.; Talebi, N.; Khunsin, W.; Gehring, P.; de Zuani, S.; Gompf, B.; Kern, K. Tetradymites as natural hyperbolic materials for the near–infrared to visible. ACS Photonics 2014, 1, 1285–1289. [Google Scholar] [CrossRef]
- Querry, M.R. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet; Chemical Research, Development & Engineering Center, US Army Armament Munitions Chemical Command: Columbia, MO, USA, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wei, Y.; Liu, Z.; Duan, G.; Yang, D.; Cheng, P. Perfect Solar Absorber with Extremely Low Infrared Emissivity. Photonics 2022, 9, 574. https://doi.org/10.3390/photonics9080574
Wang Z, Wei Y, Liu Z, Duan G, Yang D, Cheng P. Perfect Solar Absorber with Extremely Low Infrared Emissivity. Photonics. 2022; 9(8):574. https://doi.org/10.3390/photonics9080574
Chicago/Turabian StyleWang, Zhaolong, Yinbao Wei, Zhen Liu, Guihui Duan, Dongsheng Yang, and Ping Cheng. 2022. "Perfect Solar Absorber with Extremely Low Infrared Emissivity" Photonics 9, no. 8: 574. https://doi.org/10.3390/photonics9080574
APA StyleWang, Z., Wei, Y., Liu, Z., Duan, G., Yang, D., & Cheng, P. (2022). Perfect Solar Absorber with Extremely Low Infrared Emissivity. Photonics, 9(8), 574. https://doi.org/10.3390/photonics9080574