Short-Reach MCF-Based Systems Employing KK Receivers and Feedforward Neural Networks for ICXT Mitigation
Abstract
:1. Introduction
2. System Modelling
2.1. Optical Transmitter
2.2. MCF Model
2.3. Optical Receiver
2.4. Machine Learning
2.4.1. K-Means Clustering
2.4.2. K Nearest Neighbor
2.4.3. Feedforward Neural Network
2.5. Simulation Conditions and Parameters
3. Results and Discussion
3.1. Impact of the ICXT on the System Performance
3.2. Performance of Short-Reach MCF-Based System Employing ML Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richardson, D.J.; Fini, J.M.; Nelson, L.E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Perin, J.K.; Shastri, A.; Kahn, J.M. Data center links beyond 100 Gbit/s per wavelength. Opt. Fiber Technol. 2018, 44, 69–85. [Google Scholar] [CrossRef]
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber optic transmission and networking: The previous 20 and the next 20 years [Invited]. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef] [PubMed]
- Butler, D.L.; Li, M.-J.; Li, S.; Geng, Y.; Khrapko, R.R.; Modavis, R.A.; Nazarov, V.N.; Koklyushkin, A.V. Space division multiplexing in short reach optical interconnects. J. Light. Technol. 2016, 35, 677–682. [Google Scholar] [CrossRef]
- Alves, T.M.F.; Cartaxo, A.V.T. Theoretical modelling of random time nature of inter-core crosstalk in multicore fibers. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; pp. 521–522. [Google Scholar] [CrossRef]
- Alves, T.F.; Cartaxo, A.V.T.; Rebola, J.L. Stochastic properties and outage in crosstalk-impaired OOK-DD weakly-coupled MCF applications with low and high skew×bit-rate. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Alves, T.M.F.; Luís, R.S.; Puttnam, B.J.; Cartaxo, A.; Awaji, Y.; Wada, N. Performance of adaptive DD-OFDM multicore fiber links and its relation with intercore crosstalk. Opt. Express 2017, 25, 16017–16027. [Google Scholar] [CrossRef] [PubMed]
- Luís, R.S.; Rademacher, G.; Puttnam, B.J.; Awaji, Y.; Wada, N. Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing. Opt. Express 2018, 26, 24044–24053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Saitoh, K. Inter-core crosstalk mitigation in multicore fibers by optical CDMA spreading technique with referenced channels. In Proceedings of the Asia Communications and Photonics Conference (ACPC), OSA Technical Digest (Optica Publishing Group), Chengdu, China, 2–5 November 2019; p. M4A.177. [Google Scholar]
- Le, S.T.; Schuh, K.; Chagnon, M.; Buchali, F.; Dischler, R.; Aref, V.; Buelow, H.; Engenhardt, K.M. 1.72-Tb/s Virtual-carrier-assisted direct-detection transmission over 200 km. J. Light. Technol. 2018, 36, 1347–1353. [Google Scholar] [CrossRef]
- Gaiarin, S.; Pang, X.; Ozolins, O.; Jones, R.T.; Da Silva, E.P.; Schatz, R.; Westergren, U.; Popov, S.; Jacobsen, G.; Zibar, D. High Speed PAM-8 optical interconnects with digital equalization based on neural network. In Proceedings of the Asia Communications and Photonics Conference, Wuhan, China, 2–5 November 2016; pp. 1–3. [Google Scholar]
- Xu, Z.; Sun, C.; Ji, T.; Manton, J.H.; Shieh, W. Computational complexity comparison of feedforward/radial basis function/recurrent neural network-based equalizer for a 50-Gb/s PAM4 direct-detection optical link. Opt. Express 2019, 27, 36953–36964. [Google Scholar] [CrossRef] [PubMed]
- Rafique, D.; Velasco, L. Machine learning for network automation: Overview, architecture, and applications. J. Opt. Commun. Netw. 2018, 10, D126–D143. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Cheng, B.; Hang, C.; Hu, Y.; Liu, S.; Wang, Y.; Shen, J. A deep learning based RSA strategy for elastic optical networks. In Proceedings of the 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, H.; Zhu, R.; Yu, A.; Bai, W.; Tan, Y.; Zhang, J.; Xiao, H. Core, mode, and spectrum assignment based on machine learning in space division multiplexing elastic optical networks. IEEE Access 2018, 6, 15898–15907. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Liu, M.; Zhou, H.; Wang, F.; Chen, J.; Cao, B.Y.; Song, Y.X.; Zhang, J.J.; Li, Y.C.; Wang, M. A machine learning enabled optical IMDD SDM OFDM system. In Proceedings of the 23rd Opto-Electronics and Communications Conference (OECC), Jeju, Korea, 2–6 July 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Mu, X.; Ottino, A.; Ferreira, F.M.; Zervas, G. Optimization of 125-µm Heterogeneous multi-core fibre design using artificial intelligence. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 1–13. [Google Scholar] [CrossRef]
- Soeiro, R.O.J.; Alves, T.M.F.; Cartaxo, A.V.T. Dual polarization discrete changes model of inter-core crosstalk in multi-core fibers. IEEE Photonics Technol. Lett. 2017, 29, 1395–1398. [Google Scholar] [CrossRef]
- Pinheiro, B.R.P.; Rebola, J.L.L.; Cartaxo, A.V.T. Analysis of inter-core crosstalk in weakly-coupled multi-core fiber coherent systems. J. Light. Technol. 2021, 39, 42–54. [Google Scholar] [CrossRef]
- Alves, T.M.F.; Cartaxo, A.V.T. Characterization of the stochastic time evolution of short-term average intercore crosstalk in multicore fibers with multiple interfering cores. Opt. Express 2018, 26, 4605–4620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, E.; Mori, Y.; Hasegawa, H.; Sato, K.-I. Intra- and inter-datacentre converged networks utilising Kramers-Kronig receivers. In Proceedings of the 45th European Conference on Optical Communication (ECOC), Dublin, Ireland, 22–26 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Luis, R.S.; Puttnam, B.J.; Cartaxo, A.; Klaus, W.; Mendinueta, J.M.D.; Awaji, Y.; Wada, N.; Nakanishi, T.; Hayashi, T.; Sasaki, T. Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers. J. Light. Technol. 2016, 34, 441–447. [Google Scholar] [CrossRef]
- Matsui, T.; Sagae, Y.; Sakamoto, T.; Nakajima, K. Design and applicability of multi-core fibers with standard cladding diameter. J. Light. Technol. 2020, 38, 6065–6070. [Google Scholar] [CrossRef]
- Kopp, V.; Park, J.; Singer, J.; Neugroschl, D.; Gillooly, A. Low return loss multicore fiber-fanout assembly for SDM and sensing applications. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
Parameters | Value |
---|---|
Symbol rate (Gbaud) | 64 |
Modulation | 16-QAM |
Roll-off factor | 0.05 |
Input MCF power (dBm) | 0 |
CSPR (dB) | 13 |
Parameters | Value |
---|---|
Attenuation (dB/km) | 0.22 |
Interfered core effective refractive index | 1.4453 |
Interfering core effective refractive index | 1.4455 |
Wavelength (nm) | 1552 |
Skew × bitrate | 0.001 |
ICXT level (dB) | −13 |
Length (km) | 35 |
Parameters | Value |
---|---|
Number of inputs | 4 |
Number of hidden layers | 1 |
Number of neurons per hidden layer | 10 |
Number of outputs | 2 |
Training symbols | 20,000 |
Symbols to estimate the BER |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piedade, D.; Alves, T.; Brandão, T. Short-Reach MCF-Based Systems Employing KK Receivers and Feedforward Neural Networks for ICXT Mitigation. Photonics 2022, 9, 286. https://doi.org/10.3390/photonics9050286
Piedade D, Alves T, Brandão T. Short-Reach MCF-Based Systems Employing KK Receivers and Feedforward Neural Networks for ICXT Mitigation. Photonics. 2022; 9(5):286. https://doi.org/10.3390/photonics9050286
Chicago/Turabian StylePiedade, Derick, Tiago Alves, and Tomás Brandão. 2022. "Short-Reach MCF-Based Systems Employing KK Receivers and Feedforward Neural Networks for ICXT Mitigation" Photonics 9, no. 5: 286. https://doi.org/10.3390/photonics9050286
APA StylePiedade, D., Alves, T., & Brandão, T. (2022). Short-Reach MCF-Based Systems Employing KK Receivers and Feedforward Neural Networks for ICXT Mitigation. Photonics, 9(5), 286. https://doi.org/10.3390/photonics9050286