Numerical and Monte Carlo Simulation for Polychromatic L-Shell X-ray Fluorescence Computed Tomography Based on Pinhole Collimator with Sheet-Beam Geometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imaging System
2.2. Geometry Model of XFCTB Based on Pinhole
2.3. Numerical Simulation
2.4. Monte Carlo Simulation
2.5. XFCT Image Reconstruction
3. Results
3.1. Numerical Simulation
3.2. Monte Carlo Simulation
3.3. CNR and Detection Limit
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, B.-G.; Tao, F.; Yang, Y.-M.; Hu, T.; Wang, F.-X.; Du, G.-H.; Xue, Y.-L.; Tong, Y.-J.; Sun, T.-X.; Deng, B.; et al. X-ray fluorescence microtomography based on polycapillary-focused X-rays from laboratory source. Nucl. Sci. Tech. 2018, 29, 85. [Google Scholar] [CrossRef]
- Arantes de Carvalho, G.G.; Bueno Guerra, M.B.; Adame, A.; Nomura, C.S.; Oliveira, P.V.; Pereira de Carvalho, H.W.; Santos, D.; Nunes, L.C.; Krug, F.J. Recent advances in LIBS and XRF for the analysis of plants. J. Anal. Atom. Spectrom. 2018, 33, 919–944. [Google Scholar] [CrossRef]
- Yang, Q.; Deng, B.; Du, G.; Xie, H.; Zhou, G.; Xiao, T.; Xu, H. X-ray fluorescence computed tomography with absorption correction for biomedical samples. X-Ray Spectrom. 2014, 43, 278–285. [Google Scholar] [CrossRef]
- Cole, L.E.; Ross, R.D.; Tilley, J.M.; Vargo-Gogola, T.; Roeder, R.K. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine 2015, 10, 321–341. [Google Scholar]
- Muller, B.H.; Hoeschen, C.; Gruner, F.; Arkadiev, V.A.; Johnson, T.R. Molecular imaging based on x-ray fluorescent high-Z tracers. Phys. Med. Biol. 2013, 58, 8063–8076. [Google Scholar] [CrossRef]
- Manohar, N.; Reynoso, F.J.; Diagaradjane, P.; Krishnan, S.; Cho, S.H. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop X-ray fluorescence computed tomography. Sci. Rep. 2016, 6, 22079. [Google Scholar]
- Jones, B.L.; Manohar, N.; Reynoso, F.; Karellas, A.; Cho, S.H. Experimental demonstration of benchtop x-ray fluorescence computed tomography (XFCT) of gold nanoparticle-loaded objects using lead- and tin-filtered polychromatic cone-beams. Phys. Med. Biol. 2012, 57, N457–N467. [Google Scholar] [CrossRef]
- Cheong, S.K.; Jones, B.L.; Siddiqi, A.K.; Liu, F.; Manohar, N.; Cho, S.H. X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp X-rays. Phys. Med. Biol. 2010, 55, 647–662. [Google Scholar] [CrossRef]
- Bazalova-Carter, M.; Ahmad, M.; Xing, L.; Fahrig, R. Experimental validation of L-shell X-ray fluorescence computed tomography imaging: Phantom study. J. Med. Imaging 2015, 2, 043501. [Google Scholar]
- Bazalova-Carter, M. The potential of L-shell X-ray fluorescence CT (XFCT) for molecular imaging. Br. J. Radiol. 2015, 88, 20140308. [Google Scholar]
- Long, L.; Yang, H.; Bo, M.; Qing, X.; Lingtong, Y.; Li, L.; Songlin, F.; Xiangqian, F. Attenuation Correction of L-shell X-ray Fluorescence Computed Tomography Imaging. arXiv 2014, arXiv:1404.7250. [Google Scholar]
- Bazalova, M.; Ahmad, M.; Pratx, G.; Xing, L. L-shell X-ray fluorescence computed tomography (XFCT) imaging of Cisplatin. Phys. Med. Biol. 2014, 59, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Manohar, N.; Reynoso, F.J.; Cho, S.H. Experimental demonstration of direct L-shell X-ray fluorescence imaging of gold nanoparticles using a benchtop X-ray source. Med. Phys. 2013, 40, 080702. [Google Scholar] [CrossRef] [Green Version]
- Sunaguchi, N.; Yuasa, T.; Hyodo, K.; Zeniya, T. Fluorescent x-ray computed tomography using the pinhole effect for biomedical applications. Opt. Commun. 2013, 297, 210–214. [Google Scholar]
- Nakamura, S.; Huo, Q.; Yuasa, T. Reconstruction technique of fluorescent X-ray computed tomography using sheet beam. In Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 1975–1979. [Google Scholar]
- Meng, L.J.; Li, N.; La Riviere, P.J. X-Ray Fluorescence Emission Tomography (XFET) With Novel Imaging Geometries—A Monte Carlo Study. IEEE Trans. Nucl. Sci. 2011, 58, 3359–3369. [Google Scholar]
- Romano, F.P.; Caliri, C.; Cosentino, L.; Gammino, S.; Giuntini, L.; Mascali, D.; Neri, L.; Pappalardo, L.; Rizzo, F.; Taccetti, F. Macro and micro full field X-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution. Anal. Chem. 2014, 86, 10892–10899. [Google Scholar] [CrossRef]
- Sasaya, T.; Aoki, D.; Yuasa, T.; Hyodo, K.; Sunaguchi, N.; Zeniya, T. EM-TV reconstruction algorithm for pinhole-type fluorescent X-ray computed tomography. In Proceedings of the 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015; pp. 1–6. [Google Scholar]
- Jiang, S.; Feng, P.; Deng, L.; Chen, M.; He, P.; Wei, B. Simulation for Polychromatic L-Shell X-ray Fluorescence Computed Tomography with Pinhole Collimator. In Proceedings of the 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Xi’an, China, 18–23 June 2017; pp. 348–351. [Google Scholar]
- Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F.A.; Akatsuka, T.; Itai, Y. Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition. IEEE Trans. Nucl. Sci. 1997, 44, 54–62. [Google Scholar]
- Poludniowski, G.; Landry, G.; DeBlois, F.; Evans, P.M.; Verhaegen, F. SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes. Phys. Med. Biol. 2009, 54, N433–N438. [Google Scholar] [CrossRef]
- Dickerscheid, D.; Lavalaye, J.; Romijn, L.; Habraken, J. Contrast-noise-ratio (CNR) analysis and optimisation of breast-specific gamma imaging (BSGI) acquisition protocols. EJNMMI Res. 2013, 3, 21. [Google Scholar]
- Hettiarachchi, G.M.; Donner, E.; Doelsch, E. Application of Synchrotron Radiation-based Methods for Environmental Biogeochemistry: Introduction to the Special Section. J. Environ. Qual. 2017, 46, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Buzmakov, A.; Chukalina, M.; Nikolaev, D.; Gulimova, V.; Saveliev, S.; Tereschenko, E.; Seregin, A.; Senin, R.; Zolotov, D.; Prun, V.; et al. Monochromatic computed microtomography using laboratory and synchrotron sources and X-ray fluorescence analysis for comprehensive analysis of structural changes in bones. J. Appl. Crystallogr. 2015, 48, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Yang, Q.; Xie, H.-L.; Du, G.-H.; Xiao, T.-Q. First X-ray fluorescence CT experimental results at the SSRF X-ray imaging beamline. Chin.Phys.C 2011, 35, 402–404. [Google Scholar] [CrossRef]
- Zhang, R.; Li, L.; Sultanbawa, Y.; Xu, Z.P. X-ray fluorescence imaging of metals and metalloids in biological systems. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 169–188. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Jiang, S.; Shi, S.; Hu, X.; Zhao, M. Numerical and Monte Carlo Simulation for Polychromatic L-Shell X-ray Fluorescence Computed Tomography Based on Pinhole Collimator with Sheet-Beam Geometry. Photonics 2022, 9, 928. https://doi.org/10.3390/photonics9120928
Yang S, Jiang S, Shi S, Hu X, Zhao M. Numerical and Monte Carlo Simulation for Polychromatic L-Shell X-ray Fluorescence Computed Tomography Based on Pinhole Collimator with Sheet-Beam Geometry. Photonics. 2022; 9(12):928. https://doi.org/10.3390/photonics9120928
Chicago/Turabian StyleYang, Shuang, Shanghai Jiang, Shenghui Shi, Xinyu Hu, and Mingfu Zhao. 2022. "Numerical and Monte Carlo Simulation for Polychromatic L-Shell X-ray Fluorescence Computed Tomography Based on Pinhole Collimator with Sheet-Beam Geometry" Photonics 9, no. 12: 928. https://doi.org/10.3390/photonics9120928
APA StyleYang, S., Jiang, S., Shi, S., Hu, X., & Zhao, M. (2022). Numerical and Monte Carlo Simulation for Polychromatic L-Shell X-ray Fluorescence Computed Tomography Based on Pinhole Collimator with Sheet-Beam Geometry. Photonics, 9(12), 928. https://doi.org/10.3390/photonics9120928