Recent Progress of Neuromorphic Computing Based on Silicon Photonics: Electronic–Photonic Co-Design, Device, and Architecture
Abstract
:1. Introduction
2. Electronic–Photonic Co-Design
2.1. Weight
2.2. Summation
2.3. Activation
2.4. STDP
2.5. All-Optical versus Optoelectronic Neurons Implementation
3. Devices
3.1. Soliton Microcombs
3.1.1. Basic Science
3.1.2. Computing Based on Soliton Microcomb
3.2. Devices Based on PCM
3.2.1. Basic Science
3.2.2. Phase Change Materials for Integrated Photonics Computing
3.3. Metasurfaces
3.3.1. Basic Science
3.3.2. Computing Based on Metasurfaces
4. Architecture and Algorithm
4.1. Implementation by Interference of Light
4.2. Implementation by Resonance of Light
4.3. Algorithm
5. Outlook and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.-J.; et al. TrueNorth: Design and Tool. Flow of a 65 MW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2015, 34, 1537–1557. [Google Scholar] [CrossRef]
- Thomas, A.; Niehörster, S.; Fabretti, S.; Shepheard, N.; Kuschel, O.; Küpper, K.; Wollschläger, J.; Krzysteczko, P.; Chicca, E. Tunnel Junction Based Memristors as Artificial Synapses. Front. Neurosci. 2015, 9, 241. [Google Scholar] [CrossRef]
- Kalikka, J.; Akola, J.; Jones, R.O. Simulation of Crystallization in Ge2Sb2Te5: A Memory Effect in the Canonical Phase-Change Material. Phys. Rev. B 2014, 90, 184109. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Kalinin, S.V.; Yelisieiev, M.E.; Yang, J.; Ahmadi, M.; Eliseev, E.A.; Evans, D.R. Dynamic Control. of Ferroionic States in Ferroelectric Nanoparticles. Acta Mater. 2022, 237, 118138. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Y.; Li, K.; Qiu, J.; Han, G.; Guo, Z.; Luo, P.; An, L.; Liu, Z.; Wang, L.; et al. Magnetic Random Access Memory (MRAM). J. Nanosci. Nanotechnol. 2007, 7, 117–137. [Google Scholar] [CrossRef]
- Xu, X.; Tan, M.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Hicks, D.G.; Morandotti, R.; et al. 11 TOPS Photonic Convolutional Accelerator for Optical Neural Networks. Nature 2021, 589, 44–51. [Google Scholar] [CrossRef]
- Sunny, F.P.; Taheri, E.; Nikdast, M.; Pasricha, S. A Survey on Silicon Photonics for Deep Learning. ACM J. Emerg. Technol. 2021, 17, 1–57. [Google Scholar] [CrossRef]
- Tait, A.N.; de Lima, T.F.; Zhou, E.; Wu, A.X.; Nahmias, M.A.; Shastri, B.J.; Prucnal, P.R. Neuromorphic Photonic Networks Using Silicon Photonic Weight Banks. Sci. Rep. 2017, 7, 7430. [Google Scholar] [CrossRef] [Green Version]
- Tait, A.N.; Nahmias, M.A.; Shastri, B.J.; Prucnal, P.R. Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing. J. Light. Technol. 2014, 32, 4029–4041. [Google Scholar] [CrossRef]
- Cheng, Z.; Ríos, C.; Pernice, W.H.P.; Wright, C.D.; Bhaskaran, H. On-Chip Photonic Synapse. Sci. Adv. 2017, 3, e1700160. [Google Scholar] [CrossRef] [PubMed]
- Teo, T.Y.; Ma, X.; Pastor, E.; Wang, H.; George, J.K.; Yang, J.K.W.; Wall, S.; Miscuglio, M.; Simpson, R.E.; Sorger, V.J. Programmable Chalcogenide-Based All-Optical Deep Neural Networks. Nanophotonics 2022, 11, 4073–4088. [Google Scholar] [CrossRef]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Integrated All-Photonic Non-Volatile Multi-Level Memory. Nat. Photon. 2015, 9, 725–732. [Google Scholar] [CrossRef]
- Yu, T.; Ma, X.; Pastor, E.; George, J.; Wall, S.; Miscuglio, M.; Simpson, R.; Sorger, V. All-Chalcogenide Programmable All-Optical Deep Neural Networks. arXiv 2021, arXiv:2102.10398. [Google Scholar]
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive Devices for Computing. Nat. Nanotechnol. 2012, 8, 13–24. [Google Scholar] [CrossRef]
- Robertson, J.; Wade, E.; Hurtado, A. Electrically Controlled Neuron-Like Spiking Regimes in Vertical-Cavity Surface-Emitting Lasers at Ultrafast Rates. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 5100307. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-Optical Spiking Neurosynaptic Networks with Self-Learning Capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef]
- Williamson, I.A.D.; Hughes, T.W.; Minkov, M.; Bartlett, B.; Pai, S.; Fan, S. Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 7700412. [Google Scholar] [CrossRef]
- Amin, R.; George, J.K.; Sun, S.; Lima, T.F.; de Tait, A.N.; Khurgin, J.B.; Miscuglio, M.; Shastri, B.J.; Prucnal, P.R.; El-Ghazawi, T.; et al. ITO-Based Electro-Absorption Modulator for Photonic Neural Activation Function. APL Mater. 2019, 7, 081112. [Google Scholar] [CrossRef]
- Mourgias-Alexandris, G.; Dabos, G.; Passalis, N.; Totovi, A.; Tefas, A.; Pleros, N. All-Optical WDM Recurrent Neural Networks with Gating. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 6100907. [Google Scholar] [CrossRef]
- Robertson, J.; Wade, E.; Kopp, Y.; Bueno, J.; Hurtado, A. Toward Neuromorphic Photonic Networks of Ultrafast Spiking Laser Neurons. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 7700715. [Google Scholar] [CrossRef]
- Robertson, J.; Deng, T.; Javaloyes, J.; Hurtado, A. Controlled Inhibition of Spiking Dynamics in VCSELs for Neuromorphic Photonics: Theory and Experiments. Opt. Lett. 2017, 42, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Zhang, Y.; Guo, X.; Wen, A.; Hao, Y. Photonic Generation of Neuron-Like Dynamics Using VCSELs Subject to Double Polarized Optical Injection. J. Light. Technol. 2018, 36, 4227–4234. [Google Scholar] [CrossRef]
- Finelli, L.A.; Haney, S.; Bazhenov, M.; Stopfer, M.; Sejnowski, T.J. Synaptic Learning Rules and Sparse Coding in a Model Sensory System. PLoS Comput. Biol. 2008, 4, e1000062. [Google Scholar] [CrossRef]
- Toole, R.; Tait, A.N.; de Lima, T.F.; Nahmias, M.A.; Shastri, B.J.; Prucnal, P.R.; Fok, M.P. Photonic Implementation of Spike-Timing-Dependent Plasticity and Learning Algorithms of Biological Neural Systems. J. Light. Technol. 2015, 34, 470–476. [Google Scholar] [CrossRef]
- Mesaritakis, C.; Skontranis, M.; Sarantoglou, G.; Bogris, A. Micro-Ring-Resonator Based Passive Photonic Spike-Time-Dependent-Plasticity Scheme for Unsupervised Learning in Optical Neural Networks. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; p. t4c.2. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep Learning with Coherent Nanophotonic Circuits. Nat. Photon. 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Giewont, K.; Hu, S.; Peng, B.; Rakowski, M.; Rauch, S.; Rosenberg, J.C.; Sahin, A.; Stobert, I.; Stricker, A.; Nummy, K.; et al. 300-Mm Monolithic Silicon Photonics Foundry Technology. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8200611. [Google Scholar] [CrossRef]
- Xu, X.; Tan, M.; Wu, J.; Boes, A.; Corcoran, B.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; et al. Photonic Perceptron Based on a Kerr Microcomb for High-Speed, Scalable, Optical Neural Networks. Laser Photon. Rev. 2020, 14, 2000070. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Gallo, M.L.; Fu, X.; Lukashchuk, A.; Raja, A.S.; et al. Parallel Convolutional Processing Using an Integrated Photonic Tensor Core. Nature 2021, 589, 52–58. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; Ou, X.; Li, X.; Lai, J.; Liu, N.; Cheng, X.; Pan, A.; Duan, H. Metasurface-Enabled on-Chip Multiplexed Diffractive Neural Networks in the Visible. Light. Sci. Appl. 2022, 11, 158. [Google Scholar] [CrossRef] [PubMed]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr Solitons in Optical Microresonators. Science 2018, 361. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, X.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. RF Photonics: An Optical Microcombs’ Perspective. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 6101020. [Google Scholar] [CrossRef]
- Riemensberger, J.; Lukashchuk, A.; Karpov, M.; Weng, W.; Lucas, E.; Liu, J.; Kippenberg, T.J. Massively Parallel Coherent Laser Ranging Using a Soliton Microcomb. Nature 2020, 581, 164–170. [Google Scholar] [CrossRef]
- Spencer, D.T.; Drake, T.; Briles, T.C.; Stone, J.; Sinclair, L.C.; Fredrick, C.; Li, Q.; Westly, D.; Ilic, B.R.; Bluestone, A.; et al. An Optical-Frequency Synthesizer Using Integrated Photonics. Nature 2018, 557, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Liu, S.; Bowers, J.E. Integrated Optical Frequency Comb Technologies. Nat. Photon. 2022, 16, 95–108. [Google Scholar] [CrossRef]
- Lin, G.; Song, Q. Kerr Frequency Comb Interaction with Raman, Brillouin, and Second Order Nonlinear Effects. Laser Photon. Rev. 2022, 16, 2100184. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Spillane, S.M.; Vahala, K.J. Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity. Phys. Rev. Lett. 2004, 93, 083904. [Google Scholar] [CrossRef]
- Boyraz, O.; Jalali, B. Demonstration of a Silicon Raman Laser. Opt Express 2004, 12, 5269. [Google Scholar] [CrossRef]
- Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. Electrically Pumped Hybrid AlGaInAs-Silicon Evanescent Laser. Opt. Express 2006, 14, 9203. [Google Scholar] [CrossRef]
- Rong, H.; Jones, R.; Liu, A.; Cohen, O.; Hak, D.; Fang, A.; Paniccia, M. A Continuous-Wave Raman Silicon Laser. Nature 2005, 433, 725–728. [Google Scholar] [CrossRef] [PubMed]
- Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T.J. Optical Frequency Comb Generation from a Monolithic Microresonator. Nature 2007, 450, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Herr, T.; Brasch, V.; Jost, J.D.; Wang, C.Y.; Kondratiev, N.M.; Gorodetsky, M.L.; Kippenberg, T.J. Temporal Solitons in Optical Microresonators. Nat. Photon. 2014, 8, 145–152. [Google Scholar] [CrossRef]
- Shen, B.; Chang, L.; Liu, J.; Wang, H.; Yang, Q.-F.; Xiang, C.; Wang, R.N.; He, J.; Liu, T.; Xie, W.; et al. Integrated Turnkey Soliton Microcombs Operated at CMOS Frequencies. In Proceedings of the CLEO: Science and Innovations, Virtual, 11–15 May 2020; p. SF3O.4. [Google Scholar] [CrossRef]
- Antonik, P.; Marsal, N.; Brunner, D.; Rontani, D. Human Action Recognition with a Large-Scale Brain-Inspired Photonic Computer. Nat. Mach. Intell. 2019, 1, 530–537. [Google Scholar] [CrossRef]
- Sadegh-Bonab, S.; Alipour-Banaei, H. A Novel Proposal for an All-Optical 2-Bit Adder/Subtractor Based on Photonic Crystal Ring Resonators. Photon. Nanostructures-Fundam. Appl. 2020, 39, 100777. [Google Scholar] [CrossRef]
- Ghadi, A. All-Optical Computing Circuits Half-Subtractor and Comparator Based on Soliton Interactions. Optik 2021, 227, 166079. [Google Scholar] [CrossRef]
- Silva, N.A.; Ferreira, T.D.; Guerreiro, A. Reservoir Computing with Solitons. New J. Phys. 2021, 23, 023013. [Google Scholar] [CrossRef]
- Stegmaier, M.; Ríos, C.; Bhaskaran, H.; Wright, C.D.; Pernice, W.H.P. Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks. Adv. Opt. Mater. 2017, 5, 1600346. [Google Scholar] [CrossRef]
- Zhang, Y.; Chou, J.B.; Li, J.; Li, H.; Du, Q.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.; Zhong, H.; et al. Broadband Transparent Optical Phase Change Materials for High-Performance Nonvolatile Photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Menon, R.; Sensale-Rodriguez, B. Unique Prospects of Phase Change Material Sb 2 Se 3 for Ultra-Compact Reconfigurable Nanophotonic Devices. Opt. Mater. Express 2021, 11, 3007. [Google Scholar] [CrossRef]
- Lawson, D.; Hewak, D.W.; Muskens, O.L.; Zeimpekis, I. Time-Resolved Reversible Optical Switching of the Ultralow-Loss Phase Change Material Sb2Se3. J. Opt. 2022, 24, 064013. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, J.; Saxena, A.; Whitehead, J.; Chen, Y.; Majumdar, A. Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material. Adv. Opt. Mater. 2021, 9, 2002049. [Google Scholar] [CrossRef]
- Yamada, N.; Ohno, E.; Akahira, N.; Nishiuchi, K.; Nagata, K.; Takao, M. High Speed Overwritable Phase Change Optical Disk Material. Jpn. J. Appl. Phys. 1987, 26, 61. [Google Scholar] [CrossRef]
- Liu, B.; Wei, T.; Hu, J.; Li, W.; Ling, Y.; Liu, Q.; Cheng, M.; Song, Z. Universal Memory Based on Phase-Change Materials: From Phase-Change Random Access Memory to Optoelectronic Hybrid Storage. Chin. Phys. B 2021, 30, 058504. [Google Scholar] [CrossRef]
- Nisar, M.S.; Yang, X.; Lu, L.; Chen, J.; Zhou, L. On-Chip Integrated Photonic Devices Based on Phase Change Materials. Photonics 2021, 8, 205. [Google Scholar] [CrossRef]
- Wang, X.; Qi, H.; Hu, X.; Yu, Z.; Ding, S.; Du, Z.; Gong, Q. Advances in Photonic Devices Based on Optical Phase-Change Materials. Molecules 2021, 26, 2813. [Google Scholar] [CrossRef]
- Chakraborty, I.; Saha, G.; Sengupta, A.; Roy, K. Toward Fast Neural Computing Using All-Photonic Phase Change Spiking Neurons. Sci. Rep. 2018, 8, 12980. [Google Scholar] [CrossRef]
- Li, X.; Youngblood, N.; Ríos, C.; Cheng, Z.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Fast and Reliable Storage Using a 5 Bit, Nonvolatile Photonic Memory Cell. Optica 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Lee, J.S.; Farmakidis, N.; Wright, C.D.; Bhaskaran, H. Polarization-Selective Reconfigurability in Hybridized-Active-Dielectric Nanowires. Sci. Adv. 2022, 8, eabn9459. [Google Scholar] [CrossRef]
- Miscuglio, M.; Meng, J.; Yesiliurt, O.; Zhang, Y.; Prokopeva, L.J.; Mehrabian, A.; Hu, J.; Kildishev, A.V.; Sorger, V.J. Artificial Synapse with Mnemonic Functionality Using GSST-Based Photonic Integrated Memory. In Proceedings of the 2020 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey, CA, USA, 27–31 July 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Pernice, W.H.P.; Bhaskaran, H. Photonic Non-Volatile Memories Using Phase Change Materials. Appl. Phys. Lett. 2012, 101, 171101. [Google Scholar] [CrossRef]
- Rios, C.; Hosseini, P.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. On-Chip Photonic Memory Elements Employing Phase-Change Materials. Adv Mater 2014, 26, 1372–1377. [Google Scholar] [CrossRef]
- Babashah, H.; Kavehvash, Z.; Koohi, S.; Khavasi, A. Integration in Analog Optical Computing Using Metasurfaces Revisited: Toward Ideal Optical Integration. J. Opt. Soc. Am. B 2017, 34, 1270. [Google Scholar] [CrossRef]
- Sol, J.; Smith, D.R.; Hougne, P. del Meta-Programmable Analog Differentiator. Nat. Commun. 2022, 13, 1713. [Google Scholar] [CrossRef]
- Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-Optical Machine Learning Using Diffractive Deep Neural Networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef]
- Spägele, C.; Tamagnone, M.; Kazakov, D.; Ossiander, M.; Piccardo, M.; Capasso, F. Multifunctional Wide-Angle Optics and Lasing Based on Supercell Metasurfaces. Nat. Commun. 2021, 12, 3787. [Google Scholar] [CrossRef]
- Burckel, D.B.; Wendt, J.R.; Eyck, G.A.T.; Ginn, J.C.; Ellis, A.R.; Brener, I.; Sinclair, M.B. Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers. Adv. Mater. 2010, 22, 5053–5057. [Google Scholar] [CrossRef]
- Sun, S.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.-T.; Guo, G.-Y.; et al. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef]
- Zahra, S.; Ma, L.; Wang, W.; Li, J.; Chen, D.; Liu, Y.; Zhou, Y.; Li, N.; Huang, Y.; Wen, G. Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review. Front. Phys. 2021, 8, 593411. [Google Scholar] [CrossRef]
- Hu, J.; Bandyopadhyay, S.; Liu, Y.; Shao, L. A Review on Metasurface: From Principle to Smart Metadevices. Front. Phys. 2021, 8, 586087. [Google Scholar] [CrossRef]
- Chen, K.; Feng, Y.; Monticone, F.; Zhao, J.; Zhu, B.; Jiang, T.; Zhang, L.; Kim, Y.; Ding, X.; Zhang, S.; et al. A Reconfigurable Active Huygens’ Metalens. Adv. Mater. 2017, 29, 1606422. [Google Scholar] [CrossRef]
- Cong, L.; Srivastava, Y.K.; Zhang, H.; Zhang, X.; Han, J.; Singh, R. All-Optical Active THz Metasurfaces for Ultrafast Polarization Switching and Dynamic Beam Splitting. Light. Sci. Appl. 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Xu, L.; Miroshnichenko, A.E.; Komar, A.; Camacho-Morales, R.; Chen, H.; Zárate, Y.; Kruk, S.; Zhang, G.; Neshev, D.N.; et al. Reversible Thermal Tuning of All-Dielectric Metasurfaces. Adv. Funct. Mater. 2017, 27, 1700580. [Google Scholar] [CrossRef]
- Tang, S.; Cai, T.; Xu, H.-X.; He, Q.; Sun, S.; Zhou, L. Multifunctional Metasurfaces Based on the “Merging” Concept and Anisotropic Single-Structure Meta-Atoms. Appl. Sci. 2018, 8, 555. [Google Scholar] [CrossRef]
- Maguid, E.; Yulevich, I.; Veksler, D.; Kleiner, V.; Brongersma, M.L.; Hasman, E. Photonic Spin-Controlled Multifunctional Shared-Aperture Antenna Array. Science 2016, 352, 1202–1206. [Google Scholar] [CrossRef]
- Rubin, N.A.; D’Aversa, G.; Chevalier, P.; Shi, Z.; Chen, W.T.; Capasso, F. Matrix Fourier Optics Enables a Compact Full-Stokes Polarization Camera. Science 2019, 365. [Google Scholar] [CrossRef]
- Yoon, G.; Lee, D.; Rho, J. Demonstration of Equal-Intensity Beam Generation by Dielectric Metasurfaces. J. Vis. Exp. 2019, 148, e59066. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, J.; Mun, J.; Lee, D.; Nam, K.T.; Rho, J. Wavelength-Decoupled Geometric Metasurfaces by Arbitrary Dispersion Control. Commun. Phys. 2019, 2, 129. [Google Scholar] [CrossRef]
- Mudachathi, R.; Tanaka, T. Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation. Sci. Rep. 2017, 7, 1199. [Google Scholar] [CrossRef] [Green Version]
- Yoon, G.; Tanaka, T.; Zentgraf, T.; Rho, J. Recent Progress on Metasurfaces: Applications and Fabrication. J. Phys. D Appl. Phys. 2021, 54, 383002. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Soman, A.; Mao, D.; Kananen, T.; Gu, T. On-Chip Wavefront Shaping with Dielectric Metasurface. Nat. Commun. 2019, 10, 3547. [Google Scholar] [CrossRef]
- Liao, K.; Gan, T.; Hu, X.; Gong, Q. AI-Assisted on-Chip Nanophotonic Convolver Based on Silicon Metasurface. Nanophotonics 2020, 9, 3315–3322. [Google Scholar] [CrossRef]
- Qian, C.; Lin, X.; Lin, X.; Xu, J.; Sun, Y.; Li, E.; Zhang, B.; Chen, H. Performing Optical Logic Operations by a Diffractive Neural Network. Light. Sci. Appl. 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Marzban, M.; Khavasi, A. Integrated Photonic Neural Network Based on Silicon Metalines. Opt. Express 2020, 28, 36668. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Zang, Y.; Huang, H.; Du, Z.; Hu, C.; Chen, M.; Yang, S.; Chen, H. On-Chip Photonic Diffractive Optical Neural Network Based on a Spatial Domain Electromagnetic Propagation Model. Opt. Express 2021, 29, 31924. [Google Scholar] [CrossRef]
- Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. Programmable Phase-Change Metasurfaces on Waveguides for Multimode Photonic Convolutional Neural Network. Nat. Commun. 2021, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Samara-Rubio, D.; Morse, M.; Liu, A.; Hodge, D.; Rubin, D.; Keil, U.; Franck, T. High Speed Silicon Mach-Zehnder Modulator. Opt. Express 2005, 13, 3129–3135. [Google Scholar] [CrossRef]
- Su, T.; Zhang, M.; Chen, X.; Zhang, Z.; Liu, M.; Liu, L.; Huang, S. Improved 10-Gbps Uplink Transmission in WDM-PON with RSOA-Based Colorless ONUs and MZI-Based Equalizers. Opt. Laser Technol. 2013, 51, 90–97. [Google Scholar] [CrossRef]
- Shokraneh, F.; Geoffroy-Gagnon, S.; Nezami, M.S.; Liboiron-Ladouceur, O. A Single Layer Neural Network Implemented by a 4 × 4 MZI-Based Optical Processor. IEEE Photon. J. 2019, 11, 4501612. [Google Scholar] [CrossRef]
- Miller, D.A.B. Self-Configuring Universal Linear Optical Component. Photon. Res. 2013, 1, 1–15. [Google Scholar] [CrossRef]
- Shibuya, T.; Zhao, Z.; Liu, D.; Li, M.; Ying, Z.; Zhang, L.; Xu, B.; Yu, B.; Chen, R.T.; Pan, D.Z. Hardware-Software Co-Design of Slimmed Optical Neural Networks. In Proceedings of the 24th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 21–24 January 2019; pp. 705–710. [Google Scholar] [CrossRef]
- Gu, J.; Zhao, Z.; Feng, C.; Liu, M.; Chen, R.T.; Pan, D.Z. Towards Area-Efficient Optical Neural Networks: An FFT-Based Architecture. In Proceedings of the 2020 25th Asia and South Pacific Design Automation Conference, Beijing, China, 13–16 January 2020; pp. 476–481. [Google Scholar] [CrossRef]
- Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S. Optoelectronic Reservoir Computing. Sci. Rep. 2012, 2, 287. [Google Scholar] [CrossRef]
- Cheng, Q.; Kwon, J.; Glick, M.; Bahadori, M.; Carloni, L.P.; Bergman, K. Silicon Photonics Codesign for Deep Learning. Proc. IEEE 2020, 108, 1261–1282. [Google Scholar] [CrossRef]
- Dang, D.; Dass, J.; Mahapatra, R. ConvLight: A Convolutional Accelerator with Memristor Integrated Photonic Computing. In Proceedings of the 2017 IEEE 24th International Conference on High Performance Computing (HiPC), Jaipur, India, 18–21 December 2017; pp. 114–123. [Google Scholar] [CrossRef]
- Shiflett, K.; Wright, D.; Karanth, A.; Louri, A. PIXEL: Photonic Neural Network Accelerator. In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), San Diego, CA, USA, 22–26 February 2020; pp. 474–487. [Google Scholar] [CrossRef]
- Coarer, F.D.-L.; Sciamanna, M.; Katumba, A.; Freiberger, M.; Dambre, J.; Bienstman, P.; Rontani, D. All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 7600108. [Google Scholar] [CrossRef]
- Hughes, T.W.; Minkov, M.; Shi, Y.; Fan, S. Training of Photonic Neural Networks through in Situ Backpropagation and Gradient Measurement. Optica 2018, 5, 864. [Google Scholar] [CrossRef]
- Hughes, T.; Veronis, G.; Wootton, K.P.; England, R.J.; Fan, S. Method for Computationally Efficient Design of Dielectric Laser Accelerator Structures. Opt. Express 2017, 25, 15414–15427. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wang, J.; Dan, Y.; Lanqiu, Y.; Dai, J.; Han, X.; Sun, X.; Xu, K. Efficient Training and Design of Photonic Neural Network through Neuroevolution. Opt. Express 2019, 27, 37150–37163. [Google Scholar] [CrossRef]
- Antonik, P.; Marsal, N.; Brunner, D.; Rontani, D. Bayesian Optimisation of Large-Scale Photonic Reservoir Computers. Cogn. Comput. 2021, 1–9. [Google Scholar] [CrossRef]
- Wu, C.; Yang, X.; Yu, H.; Peng, R.; Takeuchi, I.; Chen, Y.; Li, M. Harnessing Optoelectronic Noises in a Photonic Generative Network. Sci. Adv. 2022, 8, eabm2956. [Google Scholar] [CrossRef]
- Freiberger, M.; Katumba, A.; Bienstman, P.; Dambre, J. Training Passive Photonic Reservoirs with Integrated Optical Readout. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1943–1953. [Google Scholar] [CrossRef]
- Moon, S.; Shin, K.; Jeon, D. Enhancing Reliability of Analog Neural Network Processors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1455–1459. [Google Scholar] [CrossRef]
- Xu, X.; Ren, G.; Feleppa, T.; Liu, X.; Boes, A.; Mitchell, A.; Lowery, A.J. Self-Calibrating Programmable Photonic Integrated Circuits. Nat. Photon. 2022, 16, 595–602. [Google Scholar] [CrossRef]
- Wan, Y.; Xiang, C.; Guo, J.; Koscica, R.; Kennedy, M.; Selvidge, J.; Zhang, Z.; Chang, L.; Xie, W.; Huang, D.; et al. High Speed Evanescent Quantum-Dot Lasers on Si. Laser Photon. Rev. 2021, 15, 2100057. [Google Scholar] [CrossRef]
- Wan, Y.; Inoue, D.; Jung, D.; Norman, J.C.; Shang, C.; Gossard, A.C.; Bowers, J.E. Directly Modulated Quantum Dot Lasers on Silicon with a Milliampere Threshold and High Temperature Stability. Photon. Res. 2018, 6, 776. [Google Scholar] [CrossRef]
- Dang, D.; Chittamuru, S.V.R.; Pasricha, S.; Mahapatra, R.; Sahoo, D. BPLight-CNN: A Photonics-Based Backpropagation Accelerator for Deep Learning. ACM J. Emerg. Technol. 2021, 17, 1–26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Huang, Y.; Fang, Y.; Wang, Z.; Yu, S.; Xu, R. Recent Progress of Neuromorphic Computing Based on Silicon Photonics: Electronic–Photonic Co-Design, Device, and Architecture. Photonics 2022, 9, 698. https://doi.org/10.3390/photonics9100698
Xu B, Huang Y, Fang Y, Wang Z, Yu S, Xu R. Recent Progress of Neuromorphic Computing Based on Silicon Photonics: Electronic–Photonic Co-Design, Device, and Architecture. Photonics. 2022; 9(10):698. https://doi.org/10.3390/photonics9100698
Chicago/Turabian StyleXu, Bo, Yuhao Huang, Yuetong Fang, Zhongrui Wang, Shaoliang Yu, and Renjing Xu. 2022. "Recent Progress of Neuromorphic Computing Based on Silicon Photonics: Electronic–Photonic Co-Design, Device, and Architecture" Photonics 9, no. 10: 698. https://doi.org/10.3390/photonics9100698
APA StyleXu, B., Huang, Y., Fang, Y., Wang, Z., Yu, S., & Xu, R. (2022). Recent Progress of Neuromorphic Computing Based on Silicon Photonics: Electronic–Photonic Co-Design, Device, and Architecture. Photonics, 9(10), 698. https://doi.org/10.3390/photonics9100698