A Curvature-Based Multidirectional Local Contrast Method for Star Detection of a Star Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Image Curvature Based on a Facet Model
2.2. Local Contrast Enhancement
2.3. Block Threshold Segmentation
Algorithm 1 CMLCM |
Input: Original image |
Output: |
1: Compute four second-order directional derivatives |
2: Divide the image patch into 3 × 3 cells |
3: Calculate the average value , and of the patches |
4: Calculate local contrast ma , |
5: Remove the negative and normalization |
6: Get the CMLCM value |
3. Results
3.1. Experimental Conditions
3.2. Experimental Results
3.2.1. The Analysis of the Influence of Noise on the Image
3.2.2. Comparison of the Star Point Extraction Effect
3.2.3. Analysis of the Receiver Operating Characteristic Curve
3.2.4. Time Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebe, C.C. Accuracy performance of star trackers—A tutorial. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 587–599. [Google Scholar] [CrossRef]
- Roger, J.C.; Santer, R.; Herman, M.; Deuzé, J.L. Polarization of the solar light scattered by the earth-atmosphere system as observed from the U.S. shuttle. Remote Sens. Environ. 1994, 48, 275–290. [Google Scholar] [CrossRef]
- Kwang-Yul, K.; Yoan, S. A Distance Boundary with Virtual Nodes for the Weighted Centroid Localization Algorithm. Sensors. 2018, 18, 1054. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.Y.; Xu, L.P.; Zhang, H. Improved centroid extraction algorithm for autonomous star sensor. IET Image Process. 2015, 9, 901–907. [Google Scholar] [CrossRef]
- Fialho, M.; Mortari, D. Theoretical Limits of Star Sensor Accuracy. Sensors 2019, 19, 5355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyed, M.F.; Reza, M.M.; Mahdi, N. Flying small target detection in ir images based on adaptive toggle operator. IET Comput. Vis. 2018, 12, 527–534. [Google Scholar] [CrossRef]
- Pillai, A.; Rajkumar, S.; Marimuthu, K.; Rajasekaran, G. Adaptive new top-hat transform and multi-scale sequential toggle operator based infrared image enhancement. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L. A spatial filter based framework for target detection in hyperspectral imagery. In Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, H.T.; Luo, C.Z.; Wang, Y.; Wang, X.Z.; Zhao, S.F. Algorithm for star extraction based on self-adaptive background prediction. Opt. Tech. 2009, 35, 412–414. [Google Scholar] [CrossRef]
- Yu, L.W.; Mao, X.N.; Jin, H.; Hu, X.C.; Wu, Y.K. Study on Image Process Method of Star Tracker for Stray Lights Resistance Filtering Based on Background. Aerosp. Shanghai 2016, 33, 26–31. [Google Scholar] [CrossRef]
- Liu, X.X.; Li, B.M.; Su, Q.T.; Liu, Z.H.; Wang, Y.L.; Yang, F. New exact labeling algorithm of connected regions in binary images. Comput. Eng. Appl. 2007, 43, 76–78. [Google Scholar] [CrossRef]
- Wang, X.Y.; Peng, Z.M.; Kong, D.H.; Zhang, H.; He, Y.M. Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Du, C.; Zheng, Y. Principal curvature for infrared small target detection. Infrared Phys. Technol. 2015, 69, 36–43. [Google Scholar] [CrossRef]
- Zhu, G.Q.; Meng, X.Y.; Qian, W.X. Infrared Small Target Detection Method Based on Curvature near the Ground. Acta Photonica Sin. 2018, 47, 1010001. [Google Scholar] [CrossRef]
- Nasiri, M.; Mosavi, M.; Mirzakuchaki, S. Infrared Small Target Detection based on Human Visual Attention using Pulsed Discrete Cosine Transform. IET Image Processing 2017, 11, 397–405. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 574–581. [Google Scholar] [CrossRef]
- Han, J.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A Robust Infrared Small Target Detection Algorithm Based on Human Visual System. Geoscience and Remote Sensing Letters. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar] [CrossRef]
- Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Lu, R.T.; Yang, X.G.; Li, W.P.; Ji, W.F.; Li, D.L.; Jing, X. Robust infrared small target detection via multidirectional derivative-based weighted contrast measure. IEEE Geosci. Remote Sens. Lett. 2020, 1, 1–5. [Google Scholar] [CrossRef]
- Haralick, R.M. Digital step edges from zero crossing of second directional derivatives. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xin, Y. Wavelet-based contourlet transform and kurtosis map for infrared small target detection in complex background. Sensors 2020, 20, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wei, X.; Fan, Q.; Li, J.; Wang, G. Hardware implementation of fast and robust star centroid extraction with low resource cost. IEEE Sens. J. 2015, 15, 4857–4865. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Liu, E.; Zhao, R.; Zhang, H.; Lin, L.; Tian, H. A Curvature-Based Multidirectional Local Contrast Method for Star Detection of a Star Sensor. Photonics 2022, 9, 13. https://doi.org/10.3390/photonics9010013
Lu K, Liu E, Zhao R, Zhang H, Lin L, Tian H. A Curvature-Based Multidirectional Local Contrast Method for Star Detection of a Star Sensor. Photonics. 2022; 9(1):13. https://doi.org/10.3390/photonics9010013
Chicago/Turabian StyleLu, Kaili, Enhai Liu, Rujin Zhao, Hui Zhang, Ling Lin, and Hong Tian. 2022. "A Curvature-Based Multidirectional Local Contrast Method for Star Detection of a Star Sensor" Photonics 9, no. 1: 13. https://doi.org/10.3390/photonics9010013
APA StyleLu, K., Liu, E., Zhao, R., Zhang, H., Lin, L., & Tian, H. (2022). A Curvature-Based Multidirectional Local Contrast Method for Star Detection of a Star Sensor. Photonics, 9(1), 13. https://doi.org/10.3390/photonics9010013