A Versatile Quantum Simulator for Coupled Oscillators Using a 1D Chain of Atoms Trapped near an Optical Nanofiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tailored Coupling of the Quantized Motion of a Trapped Atom Chain
2.2. Model Assumptions and Limitations
3. Results
3.1. Simulating Coulomb Interactions between Trapped Quantum Particles
3.2. Bipartite Quantum Gates between Distant Particles
3.2.1. Using the Two Lowest Oscillator States on a Qubit Basis
3.2.2. Coherent States as a Computational Basis
3.3. Entanglement Propagation via Controlled Long-Range Interaction
3.4. State Read Out via the Outgoing Fiber Fields
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Data Values for Figure 4
Triangle | Triangle with Suppressed Interactions | |
---|---|---|
251.5 | 251.4 | |
643 | 642.6 | |
580.5 | 580.1 | |
72 | 72 | |
0 | 0 | |
666.2 | 665.8 | |
1149.7 | 1149.1 | |
754.3 | 754.3 | |
104.7 | 104.8 | |
115.5 | 115.3 | |
591.3 | 590.8 | |
724.8 | 724.5 | |
392.4 | 392.4 | |
81.2 | 81.3 |
Appendix B. Time Evolution of the Coherent States
References
- Kaufman, A.M.; Lester, B.J.; Regal, C.A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2012, 2, 041014. [Google Scholar] [CrossRef] [Green Version]
- Sheremet, A.S.; Petrov, M.I.; Iorsh, I.V.; Poshakinskiy, A.V.; Poddubny, A.N. Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations. arXiv 2021, arXiv:2103.06824v1. [Google Scholar]
- Vetsch, E.; Reitz, D.; Sagué, G.; Schmidt, R.; Dawkins, S.; Rauschenbeutel, A. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 2010, 104, 203603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goban, A.; Choi, K.; Alton, D.; Ding, D.; Lacroûte, C.; Pototschnig, M.; Thiele, T.; Stern, N.; Kimble, H. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett. 2012, 109, 033603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béguin, J.B.; Müller, J.H.; Appel, J.; Polzik, E.S. Observation of quantum spin noise in a 1D light-atoms quantum interface. Phys. Rev. X 2018, 8, 031010. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Liedl, C.; Pucher, S.; Rauschenbeutel, A.; Schneeweiss, P. Imaging and localizing individual atoms interfaced with a nanophotonic waveguide. Phy. Rev. Lett 2020, 125, 053603. [Google Scholar] [CrossRef]
- Markussen, S.B.; Appel, J.; Østfeldt, C.; Béguin, J.B.S.; Polzik, E.S.; Müller, J.H. Measurement and simulation of atomic motion in nanoscale optical trapping potentials. Appl. Phys. B 2020, 126, 73. [Google Scholar] [CrossRef]
- Jones, R.; Buonaiuto, G.; Lang, B.; Lesanovsky, I.; Olmos, B. Collectively enhanced chiral photon emission from an atomic array near a nanofiber. Phys. Rev. Lett. 2020, 124, 093601. [Google Scholar] [CrossRef] [Green Version]
- Shomroni, I.; Rosenblum, S.; Lovsky, Y.; Bechler, O.; Guendelman, G.; Dayan, B. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 2014, 345, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Pivovarov, V.; Gerasimov, L.; Berroir, J.; Ray, T.; Laurat, J.; Urvoy, A.; Kupriyanov, D. Single collective excitation of an atomic array trapped along a waveguide: A study of cooperative emission for different atomic chain configurations. arXiv 2021, arXiv:2101.05398. [Google Scholar]
- Holzmann, D.; Ritsch, H. Tailored long range forces on polarizable particles by collective scattering of broadband radiation. New J. Phys. 2016, 18, 103041. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Hinney, J.; Mahmoodian, S.; Hammerer, K.; Rind, S.; Schneeweiss, P.; Sørensen, A.S.; Volz, J.; Rauschenbeutel, A. Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode. Nat. Photonics 2020, 14, 719–722. [Google Scholar] [CrossRef]
- Cirac, J.I. Atomic self-organization around tappered nanofibers. In Proceedings of the Laser Science 2012, Rochester, NY, USA, 14–18 October 2012; Optical Society of America: Washington, DC, USA, 2012; p. LW1J.6. [Google Scholar]
- Chang, D.; Jiang, L.; Gorshkov, A.; Kimble, H. Cavity QED with atomic mirrors. New J. Phys. 2012, 14, 063003. [Google Scholar] [CrossRef] [Green Version]
- Metzger, N.K.; Wright, E.M.; Sibbett, W.; Dholakia, K. Visualization of optical binding of microparticles using a femtosecond fiber optical trap. Opt. Express 2006, 14, 3677–3687. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.E.; Cirac, J.I.; Kimble, H.J. Self-Organization of Atoms along a Nanophotonic Waveguide. Phys. Rev. Lett. 2013, 110, 113606. [Google Scholar] [CrossRef] [Green Version]
- Buonaiuto, G.; Carollo, F.; Olmos, B.; Lesanovsky, I. Dynamical phases and quantum correlations in an emitter-waveguide system with feedback. arXiv 2021, arXiv:2102.02719. [Google Scholar]
- Grießer, T.; Ritsch, H. Light-induced crystallization of cold atoms in a 1D optical trap. Phys. Rev. Lett. 2013, 111, 055702. [Google Scholar] [CrossRef] [Green Version]
- Holzmann, D.; Sonnleitner, M.; Ritsch, H. Self-ordering and collective dynamics of transversely illuminated point-scatterers in a 1D trap. Eur. Phys. J. D 2014, 68, 352. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, S.; Sonnleitner, M.; Ritsch, H. Scattering approach to two-colour light forces and self-ordering of polarizable particles. New J. Phys. 2014, 16, 043017. [Google Scholar] [CrossRef] [Green Version]
- Holzmann, D.; Sonnleitner, M.; Ritsch, H. Synthesizing variable particle interaction potentials via spectrally shaped spatially coherent illumination. New J. Phys. 2018, 20, 103009. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Zhang, X.; Ferreira, V.S.; Banker, J.; Iverson, J.K.; Sipahigil, A.; Bello, M.; González-Tudela, A.; Mirhosseini, M.; Painter, O. Quantum electrodynamics in a topological waveguide. Phys. Rev. X 2021, 11, 011015. [Google Scholar]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Hartmann, M.J. Quantum simulation with interacting photons. J. Opt. 2016, 18, 104005. [Google Scholar] [CrossRef]
- Longhi, S. Optical realization of the two-site Bose–Hubbard model in waveguide lattices. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 051001. [Google Scholar] [CrossRef] [Green Version]
- Noh, C.; Angelakis, D.G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 2016, 80, 016401. [Google Scholar] [CrossRef] [Green Version]
- Tashima, T.; Takashima, H.; Takeuchi, S. Direct optical excitation of an NV center via a nanofiber Bragg-cavity: A theoretical simulation. Opt. Express 2019, 27, 27009–27016. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.X.; Noh, C.; Rodríguez-Lara, B.; Angelakis, D.G. Quantum simulation of Cooper pairing with photons. Phys. Rev. A 2012, 86, 043840. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, D.G.; Huo, M.X.; Chang, D.; Kwek, L.C.; Korepin, V. Mimicking interacting relativistic theories with stationary pulses of light. Phys. Rev. Lett. 2013, 110, 100502. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, Z.; Hafezi, M.; Monroe, C.; Pagano, G.; Seif, A.; Shaw, A. Towards analog quantum simulations of lattice gauge theories with trapped ions. Phys. Rev. Res. 2020, 2, 023015. [Google Scholar] [CrossRef] [Green Version]
- Cirac, J.I.; Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 1995, 74, 4091. [Google Scholar] [CrossRef]
- Kewes, G.; Schoengen, M.; Neitzke, O.; Lombardi, P.; Schönfeld, R.S.; Mazzamuto, G.; Schell, A.W.; Probst, J.; Wolters, J.; Löchel, B.; et al. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Sci. Rep. 2016, 6, 28877. [Google Scholar] [CrossRef] [Green Version]
- Paulisch, V.; Kimble, H.; González-Tudela, A. Universal quantum computation in waveguide QED using decoherence free subspaces. New J. Phys. 2016, 18, 043041. [Google Scholar] [CrossRef]
- Leong, W.S.; Xin, M.; Chen, Z.; Chai, S.; Wang, Y.; Lan, S.Y. Large array of Schrödinger cat states facilitated by an optical waveguide. Nat. Commun. 2020, 11, 5295. [Google Scholar] [CrossRef]
- Li, Y.; Aolita, L.; Chang, D.E.; Kwek, L.C. Robust-fidelity atom-photon entangling gates in the weak-coupling regime. Phys. Rev. Lett. 2012, 109, 160504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Tudela, A.; Martin-Cano, D.; Moreno, E.; Martin-Moreno, L.; Tejedor, C.; Garcia-Vidal, F.J. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 2011, 106, 020501. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A. Optical Waveguide Theory; Springer: Boston, MA, USA, 1983. [Google Scholar]
- Le Kien, F.; Dutta Gupta, S.; Balykin, V.I.; Hakuta, K. Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes. Phys. Rev. A 2005, 72, 032509. [Google Scholar] [CrossRef] [Green Version]
- Scarpelli, L.; Lang, B.; Masia, F.; Beggs, D.; Muljarov, E.; Young, A.; Oulton, R.; Kamp, M.; Höfling, S.; Schneider, C.; et al. 99% beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging. Phys. Rev. B 2019, 100, 035311. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Brash, A.J.; O’Hara, J.; Martins, L.M.; Phillips, C.L.; Coles, R.J.; Royall, B.; Clarke, E.; Bentham, C.; Prtljaga, N.; et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 2018, 13, 835–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirhosseini, M.; Kim, E.; Zhang, X.; Sipahigil, A.; Dieterle, P.B.; Keller, A.J.; Asenjo-Garcia, A.; Chang, D.E.; Painter, O. Cavity quantum electrodynamics with atom-like mirrors. Nature 2019, 569, 692–697. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Li, G.; Zhang, T. High-efficiency coupling of single quantum emitters into hole-tailored nanofibers. Opt. Express 2021, 29, 11158–11168. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, Y.I.; Lukichev, V.F.; Orlikovsky, A.A.; Nuyanzin, S.A. Quantum Noise and the Quality Control of Hardward Components of Quantum Computers Based on Superconducting Phase Qubits. Russ. Microelectron. 2012, 41, 325–335. [Google Scholar] [CrossRef]
- Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007, 79, 135. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Kim, M.S. Efficient quantum computation using coherent states. Phys. Rev. A 2002, 65, 042305. [Google Scholar] [CrossRef] [Green Version]
- Ralph, T.C.; Gilchrist, A.; Milburn, G.J.; Munro, W.J.; Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 2003, 68, 042319. [Google Scholar] [CrossRef] [Green Version]
- Marek, P.; Fiurášek, J. Elementary gates for quantum information with superposed coherent states. Phys. Rev. A 2010, 82, 014304. [Google Scholar] [CrossRef] [Green Version]
- Hümmer, D.; Schneeweiss, P.; Rauschenbeutel, A.; Romero-Isart, O. Heating in nanophotonic traps for cold atoms. Phys. Rev. X 2019, 9, 041034. [Google Scholar] [CrossRef] [Green Version]
- Iversen, O.A.; Pohl, T. Strongly Correlated States of Light and Repulsive Photons in Chiral Chains of Three-Level Quantum Emitters. Phys. Rev. Lett. 2021, 126, 083605. [Google Scholar] [CrossRef]
- Jen, H. Bound and Subradiant Multi-Atom Excitations in an Atomic Array with Nonreciprocal Couplings. arXiv 2021, arXiv:2102.03757. [Google Scholar]
- Mahmoodian, S.; Calajó, G.; Chang, D.E.; Hammerer, K.; Sørensen, A.S. Dynamics of many-body photon bound states in chiral waveguide QED. Phys. Rev. X 2020, 10, 031011. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P. Chiral quantum optics. Nature 2017, 541, 473–480. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holzmann, D.; Sonnleitner, M.; Ritsch, H. A Versatile Quantum Simulator for Coupled Oscillators Using a 1D Chain of Atoms Trapped near an Optical Nanofiber. Photonics 2021, 8, 228. https://doi.org/10.3390/photonics8060228
Holzmann D, Sonnleitner M, Ritsch H. A Versatile Quantum Simulator for Coupled Oscillators Using a 1D Chain of Atoms Trapped near an Optical Nanofiber. Photonics. 2021; 8(6):228. https://doi.org/10.3390/photonics8060228
Chicago/Turabian StyleHolzmann, Daniela, Matthias Sonnleitner, and Helmut Ritsch. 2021. "A Versatile Quantum Simulator for Coupled Oscillators Using a 1D Chain of Atoms Trapped near an Optical Nanofiber" Photonics 8, no. 6: 228. https://doi.org/10.3390/photonics8060228
APA StyleHolzmann, D., Sonnleitner, M., & Ritsch, H. (2021). A Versatile Quantum Simulator for Coupled Oscillators Using a 1D Chain of Atoms Trapped near an Optical Nanofiber. Photonics, 8(6), 228. https://doi.org/10.3390/photonics8060228