Systematic Performance Comparison of (Duobinary)-PAM-2,4 Signaling under Light and Strong Opto-Electronic Bandwidth Conditions
Abstract
:1. Introduction
2. Detection of Duobinary Signals
3. Experimental Setup
4. Effect of System Bandwidth
5. Optimum Modulation Format: Transition Points
5.1. Back-to-Back Case
5.2. The Effect of Fiber Dispersion
6. Hypothetical Format-Selective Transceiver
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BER | Bit-Error Ratio |
BtB | Back-to-Back |
BW | Bandwidth |
CD | Fiber Chromatic Dispersion |
DAC | Digital-to-Analog Converter |
DB | Duobinary |
DSP | Digital Signal Processing |
FEC | Forward-Error Correction |
FFE | Feed-Forward Equalizer |
IM/DD | Intensity-Modulation with Direct-Detection |
LPF | Low-pass Filter |
MZM | Mach-Zehnder Modulator |
OFE | Otical Front-End |
PAM-M | Pulse-Amplitude Modulation of M Levels |
PMD | Polarization-Mode Dispersion |
RTO | Real-Time Oscilloscope |
TIA | Trans-Impedance Amplifier |
VOA | Variable Optical Attenuator |
ZDW | Zero-Dispersion Wavelength |
References
- Zhong, K.; Zhou, X.; Gui, T.; Tao, L.; Gao, Y.; Chen, W.; Man, J.; Zeng, L.; Lau, A.P.T.; Lu, C. Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems. Opt. Express 2015, 23, 1176–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Zhou, E.; Liu, G.N.; Zuo, T.; Zhong, Q.; Zhang, L.; Bao, Y.; Zhang, X.; Li, J.; Li, Z. Advanced modulation formats for 400-Gbps short-reach optical inter-connection. Opt. Express 2015, 23, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.G.; Morsy-Osman, M.; Hui, M.; El-Fiky, E.; Vall-Llosera, G.; Dortschy, B.; Urban, P.J.; Cavaliere, F.; Lessard, S.; Plant, D.V. DSP-free 25 Gbit/s PAM-4 Transmission using 10G Transmitter and Coherent Amplification. IEEE Photonics Technol. Lett. 2018, 30, 1547–1550. [Google Scholar] [CrossRef]
- Saber, M.G.; El-Fiky, E.; Xing, Z.; Morsy-Osman, M.; Patel, D.; Samani, A.; Alam, M.S.; Shahriar, K.A.; Xu, L.; Vall-Llosera, G.; et al. 25 and 50 Gb/s/λ PAM-4 Transmission Over 43 and 21 km Using a Simplified Coherent Receiver on SOI. IEEE Photonics Technol. Lett. 2019, 31, 799–802. [Google Scholar] [CrossRef]
- Chagnon, M.; Osman, M.; Poulin, M.; Latrasse, C.; Gagné, J.F.; Painchaud, Y.; Paquet, C.; Lessard, S.; Plant, D. Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 m. Opt. Express 2014, 22, 21018–21036. [Google Scholar] [CrossRef] [Green Version]
- IEEE P802.3bs 400Gb/s Ethernet Task Force. 2017. Available online: http://www.ieee802.org/3/bs/ (accessed on 1 March 2021).
- Harstead, E.; Van Veen, D.; Houtsma, V.; Dom, P. Technology Roadmap for Time-Division Multiplexed Passive Optical Networks (TDM PONs). J. Light. Technol. 2019, 37, 657–664. [Google Scholar] [CrossRef]
- Saber, M.G.; Vall-Llosera, G.; Patel, D.; Samani, A.; Li, R.; Morsy-Osman, M.; Chagnon, M.; El-Fiky, E.; Gutiérrez-Castrejón, R.; Urban, P.J.; et al. Silicon-based optical links using novel direct detection, coherent detection and dual polarization methods for new generation transport architectures. Opt. Commun. 2019, 450, 48–60. [Google Scholar] [CrossRef]
- Winzer, P.J.; Essiambre, R.J. Advanced modulation formats for high-capacity optical transport networks. Proc. IEEE 2006, 49, 952–985. [Google Scholar] [CrossRef]
- Frejstrup Suhr, L.; Vegas Olmos, J.J.; Mao, B.; Xu, X.; Liu, G.N.; Tafur Monroy, I. Direct modulation of 56 Gbps duobinary-4-PAM. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015; pp. 1–3. [Google Scholar]
- Frejstrup Suhr, L.; Madsen, P.; Tafur Monroy, I.; Vegas Olmos, J.J. Analog-based duobinary-4-PAM for electrical bandwidth limited optical fiber links. Opt. Appl. 2016, XLVI, 71–78. [Google Scholar] [CrossRef]
- Yang, C.; Hu, R.; Luo, M.; Yang, Q.; Li, C.; Li, H.; Yu, S. IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML. IEEE Photonics J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Zhang, Q.; Stojanovic, N.; Prodaniuc, C.; Xie, C.; Koenigsmann, M.; Laskowski, P. Single-lane 180 Gbit/s PAM-4 signal transmission over 2 km SSMF for short-reach applications. Opt. Lett. 2016, 41, 4449–4452. [Google Scholar] [CrossRef]
- Dong, J.; Hu, R. Transmission of 112 (4x28)-Gb/s PAM-4 signal over 48.6-km SSMF within only 50-GHz grid. Opt. Commun. 2016, 381, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Saber, M.G.; Gutiérrez Castrejón, R.; Alam, M.S.; Xing, Z.; El-Fiky, E.; Xu, L.; Cavaliere, F.; Vall-Llosera, G.; Lessard, S.; Plant, D.V. 100 Gb/s/λ duo-binary PAM-4 transmission using 25G components achieving 50 km reach. IEEE Photonics Technol. Lett. 2019, 32, 138–141. [Google Scholar] [CrossRef]
- Walklin, S.; Conradi, J. Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems. J. Light. Technol. 1999, 17, 2235–2248. [Google Scholar] [CrossRef]
- Lender, A. Correlative digital communication techniques. IEEE Trans. Commun. Technol. 1964, 12, 128–135. [Google Scholar] [CrossRef]
- Zhang, Q.; Stojanovic, N.; Zuo, T.; Zhang, L.; Prodaniuc, C.; Karinou, F.; Xie, C.; Zhou, E. Single-lane 180 Gb/s SSB-duobinary-PAM-4 signal transmission over 13 km SSMF. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC) Technical Digest, Los Angeles, CA, USA, 19–23 March 2017; p. Tu2D.2. [Google Scholar]
- Suhr, L.F.; Olmos, J.V.; Mao, B.; Xu, X.; Liu, G.; Monroy, I.T. 112-Gbit/s× 4-lane duobinary-4-PAM for 400GBase. In Proceedings of the 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014; pp. 1–3. [Google Scholar]
- Zhang, Q.; Stojanovic, N.; Wei, J.; Xie, C. Single-lane 180 Gb/s DB-PAM-4-signal transmission over an 80 km DCF-free SSMF link. Opt. Lett. 2017, 42, 883–886. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuge, Q.; Xin, H.; Hu, W.; Plant, D.V. Performance comparison of DML, EML and MZM in dispersion-unmanaged short reach transmissions with digital signal processing. Opt. Express 2018, 26, 34288–34304. [Google Scholar] [CrossRef] [PubMed]
- Madsen, P.; Frejstrup Suhr, L.; Rodriguez, J.S.; Tafur Monroy, I.; Vegas Olmos, J.J. Performance evaluation of multilevel modulation formats using partial response for capacity upgrade in access network with limited electronic bandwidth. Opt. Fiber Technol. 2016, 31, 168–171. [Google Scholar] [CrossRef]
- Liu, G.N.; Zhang, L.; Zuo, T.; Zhang, Q. IM/DD Transmission Techniques for Emerging 5G Fronthaul, DCI, and Metro Applications. J. Light. Technol. 2018, 36, 560–567. [Google Scholar] [CrossRef]
- Eiselt, N.; Muench, D.; Dochhan, A.; Griesser, H.; Eiselt, M.; Olmos, J.J.V.; Monroy, I.T.; Elbers, J. Performance Comparison of 112-Gb/s DMT, Nyquist PAM4, and Partial-Response PAM4 for Future 5G Ethernet-Based Fronthaul Architecture. J. Light. Technol. 2018, 36, 1807–1814. [Google Scholar] [CrossRef]
- Torres-Ferrera, P.; Wang, H.; Ferrero, V.; Gaudino, R. 100 Gbps/λ PON downstream O- and C-band alternatives using direct-detection and linear-imparment equalization. IEEE/OSA J. Opt. Commun. Netw. 2021, 13, A111–A123. [Google Scholar] [CrossRef]
- Saber, M.G.; Gutiérrez-Castrejón, R.; Xing, Z.; Alam, M.S.; El-Fiky, E.; Ceballos-Herrera, D.E.; Cavaliere, F.; Vall-Llosera, G.; Lessard, S.; Plant, D.V. Demonstration of 108 Gb/s duo-binary PAM-8 transmission and the probabilistic modeling of DB-PAM-M BER. IEEE Photonics J. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Ohlendorf, S.; Rosenkranz, W. Flexible optical modulation technologies for data center applications. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar]
- Loussouarn, Y.; Pincemin, E.; Pan, M.; Miller, G.; Gibbemeyer, A.; Mikkelsen, B. Multi-Rate Multi-Format CFP/CFP2 Digital Coherent Interfaces for Data Center Interconnects, Metro, and Long-Haul Optical Communications. J. Light. Technol. 2019, 37, 538–547. [Google Scholar] [CrossRef]
- Bosco, G. Advanced Modulation Techniques for Flexible Optical Transceivers: The Rate/Reach Tradeoff. J. Light. Technol. 2019, 37, 36–49. [Google Scholar] [CrossRef]
- Torres-Ferrera, P.; Gutiérrez-Castrejón, R.; Tomkos, I. Multi-format 800–1600 Gb/s coherent transceiver for inter-data centre interconnects over SMF. In Proceedings of the 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar]
- Roberts, K. Flexible optical transceivers. In Next-Generation Optical Communication: Components, Sub-Systems, and Systems VII; Li, G., Zhou, X., Eds.; International Society for Optics and Photonics, SPIE: San Francisco, CA, USA, 2018; Volume 10561, pp. 1–13. [Google Scholar] [CrossRef]
- Moreolo, M.S.; Fàbrega, J.M.; Nadal, L.; Martín, L. Optical Technology Options for Programmable S-BVT. In Proceedings of the 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar]
- IEEE P802.3ca 50G-EPON Task Force. 2019. Available online: https://www.ieee802.org/3/ca/ (accessed on 6 February 2021).
- Zhao, J.; Huo, L.; Chan, C.K.; Chen, L.K.; Lin, C. Analytical investigation of optimization, performance bound, and chromatic dispersion tolerance of 4-amplitude-shifted-keying format. In Proceedings of the 2006 Optical Fiber Communication Conference, Anaheim, CA, USA, 5–10 March 2006; p. JThB15. [Google Scholar] [CrossRef]
- Kumar, S.; Deen, M.J. Fiber Optic Communications: Fundamentals and Applications; John Wiley and Sons Ltd.: Chichester, UK, 2014; pp. 172–174. [Google Scholar]
- Howson, R. An Analysis of the Capabilities of Polybinary Data Transmission. IEEE Trans. Commun. Technol. 1965, 13, 312–319. [Google Scholar] [CrossRef]
- Optiwave. Available online: https://optiwave.com/ (accessed on 10 March 2021).
- Zhao, D. LDPC for 100G EPON. IEEE P802.3ca 50G-EPON Task Force Meeting. 2017. Available online: http://grouper.ieee.org/groups/802/3/ca/public/meeting_archive/2017/05/zhao_3ca_1_0517.pdf (accessed on 20 January 2021).
- Feher, K. Digital Communications, Microwave Applications; Prentice Hall: Englewood Cliffs, NJ, USA, 1981; pp. 61–63. [Google Scholar]
- Agrawal, G.P. Fiber-Optic Communication Systems, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp. 53–55. [Google Scholar]
- Tomkos, I.; Chowdhury, D.; Conradi, J.; Culverhouse, D.; Ennser, K.; Giroux, C.; Hallock, B.; Kennedy, T.; Kruse, A.; Kumar, S.; et al. Demonstration of negative dispersion fibers for DWDM metropolitan area networks. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 439–460. [Google Scholar] [CrossRef]
- Filios, A.; Gutierrez-Castrejon, R.; Tomkos, I.; Hallock, B.; Vodhanel, R.; Coombe, A.; Yuen, W.; Moreland, R.; Garrett, B.; Duvall, C.; et al. Transmission performance of a 1.5-μm 2.5-Gb/s directly modulated tunable VCSEL. IEEE Photonics Technol. Lett. 2003, 15, 599–601. [Google Scholar] [CrossRef]
- Tomkos, I.; Azodolmolky, S.; Solé-Pareta, J.; Careglio, D.; Palkopoulou, E. A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges. Proc. IEEE 2014, 102, 1317–1337. [Google Scholar] [CrossRef]
- Borkowski, R.; Schmuck, H.; Cerulo, G.; Provost, J.; Houtsma, V.; van Veen, D.; Harstead, E.; Mallecot, F.; Bonk, R. The Impact of Transmitter Chirp Parameter on the Power Penalty and Design of 50 Gbit/s TDM-PON. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; p. Th1B.5. [Google Scholar]
- Xiang, M.; Xing, Z.; El-Fiky, E.; Morsy-Osman, M.; Zhuge, Q.; Plant, D.V. Single-Lane 145 Gbit/s IM/DD Transmission With Faster-Than-Nyquist PAM4 Signaling. IEEE Photonics Technol. Lett. 2018, 30, 1238–1241. [Google Scholar] [CrossRef]
- Hu, Q.; Chagnon, M.; Schuh, K.; Buchali, F.; Bülow, H. IM/DD Beyond Bandwidth Limitation for Data Center Optical Interconnects. J. Light. Technol. 2019, 37, 4940–4946. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
Responsivity | 0.7 | A/W |
TIA conversion gain | 1400 | |
Input current noise density | 18 | pA/ |
RTO Low-bandwidth case | ||
4th-Order Bessel LPF bandwidth | 7.3 | GHz |
Brick-wall LPF bandwidth | 11 | GHz |
RTO High-bandwidth case | ||
4th-Order Bessel LPF bandwidth | 15.3 | GHz |
Brick-wall LPF bandwidth | 23 | GHz |
PAM-2 | DB-PAM-2 | PAM-4 | DB-PAM-4 | |
---|---|---|---|---|
Low-BW | 26.8 | 35.3 | 46.7 | 55.0 |
High-BW | 55.0 | 67.0 (EST) | 96.8 | 107.0 |
EST: estimated. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Castrejón, R.; Saber, M.G.; Alam, M.S.; Xing, Z.; El-Fiky, E.; Ceballos-Herrera, D.E.; Cavaliere, F.; Vall-Llosera, G.; Giorgi, L.; Lessard, S.; et al. Systematic Performance Comparison of (Duobinary)-PAM-2,4 Signaling under Light and Strong Opto-Electronic Bandwidth Conditions. Photonics 2021, 8, 81. https://doi.org/10.3390/photonics8030081
Gutiérrez-Castrejón R, Saber MG, Alam MS, Xing Z, El-Fiky E, Ceballos-Herrera DE, Cavaliere F, Vall-Llosera G, Giorgi L, Lessard S, et al. Systematic Performance Comparison of (Duobinary)-PAM-2,4 Signaling under Light and Strong Opto-Electronic Bandwidth Conditions. Photonics. 2021; 8(3):81. https://doi.org/10.3390/photonics8030081
Chicago/Turabian StyleGutiérrez-Castrejón, Ramón, Md Ghulam Saber, Md Samiul Alam, Zhenping Xing, Eslam El-Fiky, Daniel E. Ceballos-Herrera, Fabio Cavaliere, Gemma Vall-Llosera, Luca Giorgi, Stephane Lessard, and et al. 2021. "Systematic Performance Comparison of (Duobinary)-PAM-2,4 Signaling under Light and Strong Opto-Electronic Bandwidth Conditions" Photonics 8, no. 3: 81. https://doi.org/10.3390/photonics8030081
APA StyleGutiérrez-Castrejón, R., Saber, M. G., Alam, M. S., Xing, Z., El-Fiky, E., Ceballos-Herrera, D. E., Cavaliere, F., Vall-Llosera, G., Giorgi, L., Lessard, S., Brunner, R., & Plant, D. V. (2021). Systematic Performance Comparison of (Duobinary)-PAM-2,4 Signaling under Light and Strong Opto-Electronic Bandwidth Conditions. Photonics, 8(3), 81. https://doi.org/10.3390/photonics8030081