LBFA: A Load-Balanced and Fragmentation-Aware Resource Allocation Algorithm in Space-Division Multiplexing Elastic Optical Networks
Abstract
:1. Introduction
2. Related Works and Contributions
2.1. Related Works
2.2. Our Contributions
- (1)
- We first jointly consider the load-balance and fragmentation issues in providing SChs in SDM-EONs.
- (2)
- We propose a load-balanced RMA algorithm to solve the load-balance issue in providing SChs in SDM-EONs.
- (3)
- We propose a fragmentation-aware SCA algorithm to solve the fragmentation issue in providing SChs in SDM-EONs.
- (4)
- We evaluate our proposed algorithms via numerical simulation. Simulation results show that our proposed algorithm achieves state-of-the-art performance in providing SChs in SDM-EONs in a dynamic scenario.
3. System Model
3.1. Network Model
3.2. Request Model
3.3. Frequency Slot Allocation Pattern
4. Our Approach
4.1. Load-Balanced RMA
Algorithm 1: Load-balanced RMA |
Require: Network topology and connection request ; Ensure: Load-balanced path p, and bandwidth requirement q; 1: for all do 2: Calculate traffic load by (7); 3: Assign as link cost of l; 4: end for 5: Perform Dijkstra shortest path routing on G to find least-loaded path p; 6: Find feasible modulation format that gives highest data rate; 7: Calculate q by (1); 8: return ; |
4.2. Fragmentation-Aware SCA
Algorithm 2: Constructing path-based FS allocation map [16] |
Require: Network topology and route p; Ensure: Path-based FS allocation map, ; 1: for all the do 2: for all the do 3: ; 4: for all the do 5: if
then 6: ; 7: end if 8: end for 9: end for 10: end for 11: return ; |
Algorithm 3: Fragmentation-aware SCA |
Require: FS allocation map and FSAP, ; Ensure: Spectrum assignment S and core assignment ; 1: , ; initialize the spectrum and core assignment 2: while
do 3: ; initialize the cut counting 4: while
do 5: if then 6: Add j into ; 7: if then 8: ; 9: end if 10: end if 11: ; 12: end while 13: if
then 14: and ; 15: end if 16: ; 17: end while 18: if
then 19: Select M cores with minimum “cut” from and record in ; 20: end if 21: return S and ; |
4.3. LBFA RMSCA
Algorithm 4: Joint LBFA-RMSCA Algorithm |
Require: Network topology and connection request ; Ensure: Lightpath provision status; 1: False; initialize the lightpath provision flag 2: Find route p, q by Algorithm 1; 3: Construct path-based FS allocation map , by Algorithm 2; 4: Find all feasible FSAPs of q and sort them by the aW policy in [5]; 5: for all FSAP in ascending order of wasted FS (aW) do 6: Try to find spectral assignment S and core assignment ; 7: if found then 8: True; 9: break; 10: end if 11: end for 12: if
then 13: return Lightpath provision status (p, q, S, ); 14: else 15: return ⌀ This connection request is blocked 16: end if |
4.4. Computation Complexity
5. Simulation Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eramo, V.; Lavacca, F.G. Proposal and Investigation of a Reconfiguration Cost Aware Policy for Resource Allocation in Multi-Provider NFV Infrastructures Interconnected by Elastic Optical Networks. J. Lightw. Technol. 2019, 37, 4098–4114. [Google Scholar] [CrossRef]
- Eramo, V.; Lavacca, F.G.; Catena, T.; Giorgio, F.D. Reconfiguration of Optical-NFV Network Architectures Based on Cloud Resource Allocation and QoS Degradation Cost-Aware Prediction Techniques. IEEE Access 2020, 8, 200834–200850. [Google Scholar] [CrossRef]
- Eramo, V.; Lavacca, F.G. Computing and Bandwidth Resource Allocation in Multi-Provider NFV Environment. IEEE Commun. Lett. 2018, 22, 2060–2063. [Google Scholar] [CrossRef]
- Eramo, V.; Lavacca, F.G. Optimizing the Cloud Resources, Bandwidth and Deployment Costs in Multi-Providers Network Function Virtualization Environment. IEEE Access 2019, 7, 46898–46916. [Google Scholar] [CrossRef]
- Zhang, S.; Yeung, K.L. Dynamic service provisioning in space-division multiplexing elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 2020, 12, 335–343. [Google Scholar] [CrossRef]
- Saridis, G.M.; Alexandropoulos, D.; Zervas, G.; Simeonidou, D. Survey and Evaluation of Space Division Multiplexing: From Technologies to Optical Networks. IEEE Commun. Surv. Tutor. 2015, 17, 2136–2156. [Google Scholar] [CrossRef] [Green Version]
- Gerstel, O.; Jinno, M.; Lord, A.; Yoo, S.J.B. Elastic optical networking: A new dawn for the optical layer? IEEE Commun. Mag. 2012, 50, s12–s20. [Google Scholar] [CrossRef]
- Jinno, M.; Takara, H.; Kozicki, B.; Tsukishima, Y.; Sone, Y.; Matsuoka, S. Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies. IEEE Commun. Mag. 2009, 47, 66–73. [Google Scholar] [CrossRef]
- Klonidis, D.; Cugini, F.; Gerstel, O.; Jinno, M.; Lopez, V.; Palkopoulou, E.; Sekiya, M.; Siracusa, D.; Thouénon, G.; Betoule, C. Spectrally and spatially flexible optical network planning and operations. IEEE Commun. Mag. 2015, 53, 69–78. [Google Scholar] [CrossRef]
- Xia, T.J.; Fevrier, H.; Wang, T.; Morioka, T. Introduction of spectrally and spatially flexible optical networks. IEEE Commun. Mag. 2015, 53, 24–33. [Google Scholar] [CrossRef]
- Mizuno, T.; Shibahara, K.; Ye, F.; Sasaki, Y.; Amma, Y.; Takenaga, K.; Jung, Y.; Pulverer, K.; Ono, H.; Abe, Y.; et al. Long-Haul Dense Space-Division Multiplexed Transmission Over Low-Crosstalk Heterogeneous 32-Core Transmission Line Using a Partial Recirculating Loop System. J. Lightw. Technol. 2017, 35, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Sillard, P.; Richardson, D.; Li, M.; Essiambre, R.; Matsuo, S. Transmission media for an SDM-based optical communication system. IEEE Commun. Mag. 2015, 53, 44–51. [Google Scholar] [CrossRef]
- Klinkowski, M.; Zalewski, G. Dynamic crosstalk-aware lightpath provisioning in spectrally-spatially flexible optical networks. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, 213–225. [Google Scholar] [CrossRef]
- Zhu, R.; Samuel, A.; Wang, P.; Li, S.; Li, L.; Lv, P.; Xu, M. Survival Multipath Energy-Aware Resource Allocation in SDM-EONs During Fluctuating Traffic. J. Lightw. Technol. 2021, 39, 1900–1912. [Google Scholar] [CrossRef]
- Cvijetic, M.; Djordjevic, I.B.; Cvijetic, N. Dynamic multidimensional optical networking based on spatial and spectral processing. Opt. Express 2012, 20, 9144–9150. [Google Scholar] [CrossRef]
- Arpanaei, F.; Ardalani, N.; Beyranvand, H.; Alavian, S.A. Three-Dimensional Resource Allocation in Space Division Multiplexing Elastic Optical Networks. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 959–974. [Google Scholar] [CrossRef]
- Casellas, R.; Munoz, R.; Fabrega, J.M.; Moreolo, M.S.; Martinez, R.; Liu, L.; Tsuritani, T.; Morita, I. Design and Experimental Validation of a GMPLS/PCE Control Plane for Elastic CO-OFDM Optical Networks. IEEE J. Sel. Areas Commun. 2013, 31, 49–61. [Google Scholar] [CrossRef]
- Gringeri, S.; Bitar, N.; Xia, T.J. Extending software defined network principles to include optical transport. IEEE Commun. Mag. 2013, 51, 32–40. [Google Scholar] [CrossRef]
- Pederzolli, F.; Siracusa, D.; Zanardi, A.; Galimberti, G.; Fauci, D.L.; Martinelli, G. Path-based fragmentation metric and RSA algorithms for elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, 15–25. [Google Scholar] [CrossRef]
- Fujii, S.; Hirota, Y.; Tode, H.; Murakami, K. On-demand spectrum and core allocation for reducing crosstalk in multicore fibers in elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 2014, 6, 1059–1071. [Google Scholar] [CrossRef]
- Lechowicz, P.; Tornatore, M.; Wlodarczyk, A.; Walkowiak, K. Fragmentation metrics and fragmentation-aware algorithm for spectrally/spatially flexible optical networks. IEEE/OSA J. Opt. Commun. Netw. 2020, 12, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Klinkowski, M.; Walkowiak, K. Routing and Spectrum Assignment in Spectrum Sliced Elastic Optical Path Network. IEEE Commun. Lett. 2011, 15, 884–886. [Google Scholar] [CrossRef]
- Christodoulopoulos, K.; Tomkos, I.; Varvarigos, E.A. Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks. J. Lightw. Technol. 2011, 29, 1354–1366. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Pan, Y. A study of the routing and spectrum allocation in spectrum-sliced Elastic Optical Path networks. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1503–1511. [Google Scholar] [CrossRef]
- Lu, W.; Zhou, X.; Gong, L.; Zhang, M.; Zhu, Z. Dynamic Multi-Path Service Provisioning under Differential Delay Constraint in Elastic Optical Networks. IEEE Commun. Lett. 2013, 17, 158–161. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Zhu, P.; Tang, R.; Chen, Z.; He, Y. Fragmentation-aware routing and spectrum allocation scheme based on distribution of traffic bandwidth in elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 2015, 7, 1064–1074. [Google Scholar] [CrossRef]
- Wang, R.; Mukherjee, B. Spectrum management in heterogeneous bandwidth networks. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 2907–2911. [Google Scholar] [CrossRef]
- Wright, P.; Parker, M.C.; Lord, A. Minimum- and maximum-entropy routing and spectrum assignment for flexgrid elastic optical networking [invited]. IEEE/OSA J. Opt. Commun. Netw. 2015, 7, A66–A72. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, H.; Zhang, M.; Xia, M.; Zhu, Z.; Dahlfort, S.; Yoo, S.J.B. Spectral and spatial 2D fragmentation-aware routing and spectrum assignment algorithms in elastic optical networks [invited]. IEEE/OSA J. Opt. Commun. Netw. 2013, 5, A100–A106. [Google Scholar] [CrossRef]
- Rottondi, C.; Boffi, P.; Martelli, P.; Tornatore, M. Routing, Modulation Format, Baud Rate and Spectrum Allocation in Optical Metro Rings With Flexible Grid and Few-Mode Transmission. J. Lightw. Technol. 2017, 35, 61–70. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Wu, Q. Routing, spectrum, and core assignment in SDM-EONs with MCF: Node-arc ILP/MILP methods and an efficient XT-aware heuristic algorithm. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 195–208. [Google Scholar] [CrossRef]
- Tode, H.; Hirota, Y. Routing, Spectrum, and core and/or mode assignment on space-division multiplexing optical networks. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, A99–A113. [Google Scholar] [CrossRef]
- Yaghubi-Namaad, M.; Rahbar, A.G.; Alizadeh, B. Adaptive modulation and flexible resource allocation in space-division-multiplexed elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 240–251. [Google Scholar] [CrossRef]
- Marom, D.M.; Blau, M. Switching solutions for WDM-SDM optical networks. IEEE Commun. Mag. 2015, 53, 60–68. [Google Scholar] [CrossRef]
- Marom, D.M.; Colbourne, P.D.; D’errico, A.; Fontaine, N.K.; Ikuma, Y.; Proietti, R.; Zong, L.; Rivas-Moscoso, J.M.; Tomkos, I. Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, 1–26. [Google Scholar] [CrossRef]
- Pincemin, E.; Song, M.; Karaki, J.; Zia-Chahabi, O.; Guillossou, T.; Grot, D.; Thouenon, G.; Betoule, C.; Clavier, R.; Poudoulec, A.; et al. Multi-Band OFDM Transmission at 100 Gbps with Sub-Band Optical Switching. J. Lightw. Technol. 2014, 32, 2202–2219. [Google Scholar] [CrossRef]
Notion | Meaning |
---|---|
G | Topology of SDM-EON. |
N | Set of nodes in an SDM-EON. |
L | Set of links in an SDM-EON. |
R | Set of requests. |
r | One connection request. |
s | Source node of a connection request. |
d | Destination node of a connection request. |
b | Information bit rate requirement of a connection request. |
t | Holding time of one request. |
q | Bandwidth requirement of a connection request in terms of the number of FSs. |
A | Number of stuffed FSs for one FSAP. |
W | Wasted FSs for one FSAP. |
p | Path of a connection request. |
B | Guard band measured by FSs. |
C | Set of cores on one fiber link in an SDM-EON. |
c | c-th core in the MFC. |
F | Set of FSs in one core on one link in an SDM-EON. |
f | f-th FS in the MFC. |
FS utilization at f-th FS layer in c-th core on link l. | |
M | Number of cores required to establish a spatial SCh. |
I | Number of FSs required by a connection request in each core. |
S | Index of starting FS of a connection request. |
E | Index of ending FS of a connection request. |
Date rate for corresponding modulation format. | |
Traffic load on link l, . | |
Arrival rate of requests. | |
Average holding time of requests. | |
T | Entire simulation time. |
Set of feasible cores under the spectrum assignment. | |
Path-based FS allocation map. | |
FS utilization at f-th FS layer in c-th core on path-based FS allocation map. | |
Core assignment of a request. | |
Spectral utilization ratio during the entire simulation. |
Modulation Format | Date Rate (Gbps) | Transmission Reach (km) |
---|---|---|
BPSK | 12.5 | 4000 |
QPSK | 25 | 2000 |
8 QAM | 33.3 | 750 |
16 QAM | 50 | 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yeung, K.-L.; Jin, A. LBFA: A Load-Balanced and Fragmentation-Aware Resource Allocation Algorithm in Space-Division Multiplexing Elastic Optical Networks. Photonics 2021, 8, 456. https://doi.org/10.3390/photonics8100456
Zhang S, Yeung K-L, Jin A. LBFA: A Load-Balanced and Fragmentation-Aware Resource Allocation Algorithm in Space-Division Multiplexing Elastic Optical Networks. Photonics. 2021; 8(10):456. https://doi.org/10.3390/photonics8100456
Chicago/Turabian StyleZhang, Shengyu, Kwan-Lawrence Yeung, and Along Jin. 2021. "LBFA: A Load-Balanced and Fragmentation-Aware Resource Allocation Algorithm in Space-Division Multiplexing Elastic Optical Networks" Photonics 8, no. 10: 456. https://doi.org/10.3390/photonics8100456
APA StyleZhang, S., Yeung, K. -L., & Jin, A. (2021). LBFA: A Load-Balanced and Fragmentation-Aware Resource Allocation Algorithm in Space-Division Multiplexing Elastic Optical Networks. Photonics, 8(10), 456. https://doi.org/10.3390/photonics8100456