Performance of Ship-Based QKD Under the Influence of Sea-Surface Atmospheric Turbulence
Abstract
:1. Introduction
2. The Influence of Sea-Surface Turbulence on Laser Beams and Aiming Error
3. The Influence of Sea-Surface Turbulence on the Performances of a Ship-Based QKD
3.1. The Satellite-to-Ship QKD System
3.2. The Ship-to-Ship QKD System
4. Discussion
- (1)
- Time optimization: By taking advantage of diurnal and nocturnal turbulence differences, QKD experiments can prioritize low turbulence periods (such as early morning) for long-range ship-to-satellite key exchanges.
- (2)
- Adaptive optics compensation: Quantized aiming error variance provides a design specification for an adaptive beam steering system to reduce turbulence-induced aiming losses.
- (3)
- Background light suppression technology: Reducing the impact of background light on quantum light performance enables daytime QKD experiments to be performed.
- (4)
- Hybrid network architecture deployment: Combining short-range ship-to-ship QKD (under moderate turbulence conditions) with satellite relay enables secure maritime mesh networks; this is, especially important for naval operations or offshore energy infrastructure.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roger, T.; Singh, R.; Perumangatt, C.; Marangon, D.G.; Sanzaro, M.; Smith, P.R.; Woodward, R.I.; Shields, A.J. Real-time gigahertz free-space quantum key distribution within an emulated satellite overpass. Sci. Adv. 2023, 9, 5873. [Google Scholar]
- Li, Y.; Cai, W.Q.; Ren, J.G.; Wang, C.Z.; Yang, M.; Zhang, L.; Wu, H.Y.; Chang, L.; Wu, J.C.; Jin, B.; et al. Microsatellite-based real-time quantum key distribution. Nature 2025. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar]
- Bennett, C.H. Quantum cryptography using any two non-orthogonal states. Phys. Rev. Lett. 1992, 68, 3121. [Google Scholar] [CrossRef] [PubMed]
- Bonato, C.; Tomaello, A.; Da Deppo, V.; Naletto, G.; Villoresi, P. Feasibility of satellite quantum key distribution. New J. Phys. 2009, 11, 045017. [Google Scholar]
- Zedini, E.; Kammoun, A.; Soury, H.; Hamdi, M.; Alouini, M.S. Performance analysis of Dual-Hop underwater wireless optical communication systems over mixture exponential-generalized Gamma turbulence channels. IEEE Trans. Commun. 2020, 68, 5718–5731. [Google Scholar]
- Yi, X.; Djordjevic, I.B. Power spectrum of refractive-index fluctuations in turbulent ocean and its effect on optical scintillation. Opt. Express 2018, 26, 10188–10202. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Lai, J. Scintillation index and BER performance for optical wave propagation in anisotropic underwater turbulence under the effect of eddy diffusivity ratio. Appl. Opt. 2020, 59, 2551–2558. [Google Scholar] [CrossRef] [PubMed]
- Gokce, M.C.; Baykal, Y.; Ata, Y. M-ary phase shift keying-subcarrier intensity modulation performance in strong oceanic turbulence. Opt. Eng. 2019, 58, 056105. [Google Scholar]
- Baykal, Y.; Ata, Y.; Gokce, M.C. Performance of M-ary pulse position modulated optical wireless communications systems in the marine atmosphere. Appl. Opt. 2021, 60, 2166–2170. [Google Scholar] [PubMed]
- Fu, Y.Q.; Duan, Q.; Zhou, L. Performance of underwater wireless optical communication system in Gamma Gamma strong oceanic turbulence with pointing error. Infrared Laser Eng. 2020, 49, 0203013. [Google Scholar]
- Zhang, J.L.; He, H.Y.; Nie, H.; Qiu, X.F.; Li, J.Q.; Yang, Y.; He, F.T. Performance of Double-headed Pulse Interval Modulated Wireless Optical Communication System in Anisotropic Ocean Turbulence. Acta Photonica Sin. 2022, 51, 87–99. [Google Scholar]
- Azuma, K.; Economou, S.E.; Elkouss, D.; Hilaire, P.; Jiang, L.; Lo, H.K.; Tzitrin, I. Quantum repeaters: From quantum networks to the quantum internet. Rev. Mod. Phys. 2023, 95, 045006. [Google Scholar]
- Chen, Y.A.; Zhang, Q.; Chen, T.Y.; Cai, W.Q.; Liao, S.K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4600 kilometers. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, B.; Li, H.; Rao, R. Analysis of the influence of marine atmospheric turbulence to the accuracy of laser tracking system. Opt. Technol. 2009, 35, 80–82. [Google Scholar]
- Du, X.; Ding, G.X.; Du, H.; Wang, S.; Feng, H. Transmission characteristics of Hermitian-Gaussian beams in marine turbulence. J. Opt. 2023, 43, 39–46. [Google Scholar]
- He, P.L.; Wu, D.; Wang, K.H.; Li, K.N. Numerical simulation and generation mechanism of a turbulence event in a near-cloud area along the southeast coast. Arid Meteorol. 2024, 42, 922–933. [Google Scholar]
- Meyer-Scott, E.; Yan, Z.; MacDonald, A.; Bourgoin, J.P.; Hübel, H.; Jennewein, T. How to implement decoy-state quantum key distribution for satellite uplink with 50-dB channel loss. Phys. Rev. A 2011, 84, 062326. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, G.-Y.; Li, Y.-P.; Li, X.-H.; Zhang, W.-D.; Wan, Z.-A.; Zhu, Q.-M.; Gong, P.-F.; Zhang, S. Performance of Ship-Based QKD Under the Influence of Sea-Surface Atmospheric Turbulence. Photonics 2025, 12, 340. https://doi.org/10.3390/photonics12040340
Jiang G-Y, Li Y-P, Li X-H, Zhang W-D, Wan Z-A, Zhu Q-M, Gong P-F, Zhang S. Performance of Ship-Based QKD Under the Influence of Sea-Surface Atmospheric Turbulence. Photonics. 2025; 12(4):340. https://doi.org/10.3390/photonics12040340
Chicago/Turabian StyleJiang, Gui-Ying, Ya-Ping Li, Xiao-Han Li, Wei-Dong Zhang, Zi-Ao Wan, Qi-Ming Zhu, Peng-Fei Gong, and Song Zhang. 2025. "Performance of Ship-Based QKD Under the Influence of Sea-Surface Atmospheric Turbulence" Photonics 12, no. 4: 340. https://doi.org/10.3390/photonics12040340
APA StyleJiang, G.-Y., Li, Y.-P., Li, X.-H., Zhang, W.-D., Wan, Z.-A., Zhu, Q.-M., Gong, P.-F., & Zhang, S. (2025). Performance of Ship-Based QKD Under the Influence of Sea-Surface Atmospheric Turbulence. Photonics, 12(4), 340. https://doi.org/10.3390/photonics12040340