Characterizing Viscoelasticity of Corneal Stromal Models Using Non-Contact Air-Pulse Optical Coherence Elastography (OCE) and Validating Using Ramp–Hold Relaxation Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corneal Stromal Models
2.2. Cell Image Acquisition
2.3. Air-Pulse OCE Setup for Surface Acoustic Wave (SAW) Imaging
2.4. Central Thickness Measurement
2.5. Viscoelastic Characterization of Stromal Models Based on SAW Phase Velocity
2.6. Plate Compression, Ramp–Hold Stress Relaxation Test
3. Results
3.1. Morphology of Keratocytes in Stromal Model Cultures
3.2. Central Thickness of Stromal Models
3.3. Viscoelastic Properties of Stromal Models from Air-Pulse OCE
3.4. Viscoelastic Properties of Stromal Models from Plate Compression, Ramp–Hold Relaxation Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Kling, S.; Hafezi, F. Corneal biomechanics—A review. Ophthalmic Physiol. Opt. 2017, 37, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Krachmer, J.H.; Feder, R.S.; Belin, M.W. Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 1984, 28, 293–322. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ghezzi, C.E.; Gomes, R.; Pollard, R.E.; Funderburgh, J.L.; Kaplan, D.L. In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials 2017, 112, 1–9. [Google Scholar] [CrossRef]
- Wilson, S.L.; Wimpenny, I.; Ahearne, M.; Rauz, S.; El Haj, A.J.; Yang, Y. Chemical and topographical effects on cell differentiation and matrix elasticity in a corneal stromal layer model. Adv. Funct. Mater. 2012, 22, 3641–3649. [Google Scholar] [CrossRef]
- Kim, A.; Lakshman, N.; Karamichos, D.; Petroll, W.M. Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices. Investig. Ophthalmol. Vis. Sci. 2010, 51, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Wollensak, G.; Spoerl, E.; Seiler, T. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. J. Cataract Refract. Surg. 2003, 29, 1780–1785. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, A.A.; Melchor, J.; Torres, J.; Faris, I.; Callejas, A.; Gonzalez-Andrades, M.; Rus, G. Characterization of non-linear mechanical behavior of the cornea. Sci. Rep. 2020, 10, 11549. [Google Scholar]
- Crabb, R.A.; Chau, E.P.; Evans, M.C.; Barocas, V.H.; Hubel, A. Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Eng. 2006, 12, 1565–1575. [Google Scholar] [CrossRef]
- Long, K.; Liu, Y.; Li, W.; Wang, L.; Liu, S.; Wang, Y.; Wang, Z.; Ren, L. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. J. Biomed. Mater. Res. Part A 2015, 103, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Fung, Y.-C. Chapter 2. The Meaning of the Constitutive Equation. In Biomechanics: Mechanical Properties of Living Tissues; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Luo, L.; Okur, K.E.; Bagnaninchi, P.O.; El Haj, A.J. Current challenges in imaging the mechanical properties of tissue engineered grafts. Front. Biomater. Sci. 2024, 3, 1323763. [Google Scholar] [CrossRef]
- Kopito, R.; Gaujoux, T.; Montard, R.; Touzeau, O.; Allouch, C.; Borderie, V.; Laroche, L. Reproducibility of viscoelastic property and intraocular pressure measurements obtained with the Ocular Response Analyzer. Acta Ophthalmol. 2011, 89, e225–e230. [Google Scholar] [CrossRef]
- Bak-Nielsen, S.; Pedersen, I.B.; Ivarsen, A.; Hjortdal, J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea 2015, 34, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Gkika, M.; Labiris, G.; Giarmoukakis, A.; Koutsogianni, A.; Kozobolis, V. Evaluation of corneal hysteresis and corneal resistance factor after corneal cross-linking for keratoconus. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Goldich, Y.; Barkana, Y.; Morad, Y.; Hartstein, M.; Avni, I.; Zadok, D. Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?—A pilot study. Cornea 2009, 28, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, Z.; Wu, J.; Yang, C. Spectral domain optical coherence tomography: A better OCT imaging strategy. Biotechniques 2005, 39, S6–S13. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.A.; Pelivanov, I.; Song, S.; Ambrozinski, L.; Yoon, S.J.; Gao, L.; Li, D.; Shen, T.T.; Wang, R.K.; O’Donnell, M. Optical coherence elastography in ophthalmology. J. Biomed. Opt. 2017, 22, 121720. [Google Scholar] [CrossRef] [PubMed]
- Zvietcovich, F.; Larin, K.V. Wave-based optical coherence elastography: The 10-year perspective. Prog. Biomed. Eng. 2022, 4, 012007. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed. Opt. Express 2014, 5, 3807–3821. [Google Scholar] [CrossRef]
- Singh, M.; Han, Z.; Li, J.; Vantipalli, S.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography. J. Cataract Refract. Surg. 2018, 44, 1023–1031. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Singh, M.; Wu, C.; Liu, C.-h.; Raghunathan, R.; Aglyamov, S.R.; Vantipalli, S.; Twa, M.D.; Larin, K.V. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model. J. Mech. Behav. Biomed. Mater. 2017, 66, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Aglyamov, S.R.; Li, J.; Singh, M.; Wang, S.; Vantipalli, S.; Wu, C.; Liu, C.-H.; Twa, M.D.; Larin, K.V. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation. J. Biomed. Opt. 2015, 20, 020501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, K.; Feng, Z.; Feng, K.; Ji, Y.; Li, C.; Huang, Z. Viscoelastic properties’ characterization of corneal stromal models using non-contact surface acoustic wave optical coherence elastography (SAW-OCE). J. Biophotonics 2022, 15, e202100253. [Google Scholar] [CrossRef]
- Schiebener, P.; Straub, J.; Levelt Sengers, J.; Gallagher, J. Refractive index of water and steam as function of wavelength, temperature and density. J. Phys. Chem. Ref. Data 1990, 19, 677–717. [Google Scholar] [CrossRef]
- Li, C.; Guan, G.; Cheng, X.; Huang, Z.; Wang, R.K. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Opt. Lett. 2012, 37, 722–724. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Li, C.; Chen, S.; Nabi, G.; Huang, Z. Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms. J. Biophotonics 2019, 12, e201800177. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.K.; Kirkpatrick, S.; Hinds, M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl. Phys. Lett. 2007, 90, 164105. [Google Scholar] [CrossRef]
- Zhou, K.; Le, N.; Huang, Z.; Li, C. High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography. J. Biophotonics 2018, 11, e201700051. [Google Scholar] [CrossRef]
- Piskounova, S.; Rojas, R.; Bergman, K.; Hilborn, J. The Effect of Mixing on the Mechanical Properties of Hyaluronan-Based Injectable Hydrogels. Macromol. Mater. Eng. 2011, 296, 944–951. [Google Scholar] [CrossRef]
- Ahearne, M.; Yang, Y.; El Haj, A.J.; Then, K.Y.; Liu, K.-K. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interface 2005, 2, 455–463. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Insana, M.F. Ramp-hold relaxation solutions for the KVFD model applied to soft viscoelastic media. Meas. Sci. Technol. 2016, 27, 025702. [Google Scholar] [CrossRef]
- Lee, S.; Knauss, W.G. A note on the determination of relaxation and creep data from ramp tests. Mech. Time-Depend. Mater. 2000, 4, 1–7. [Google Scholar] [CrossRef]
- Zaitsev, V.Y.; Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Hepburn, M.S.; Mowla, A.; Kennedy, B.F. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances. J. Biophotonics 2021, 14, e202000257. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, V.Y.; Matveev, L.A.; Matveyev, A.L.; Plekhanov, A.A.; Gubarkova, E.V.; Kiseleva, E.B.; Sovetsky, A.A. Geophysics-Inspired Nonlinear Stress–Strain Law for Biological Tissues and Its Applications in Compression Optical Coherence Elastography. Materials 2024, 17, 5023. [Google Scholar] [CrossRef] [PubMed]
- Alexandrovskaya, Y.M.; Baum, O.I.; Sovetsky, A.A.; Matveyev, A.L.; Matveev, L.A.; Sobol, E.N.; Zaitsev, V.Y. Observation of internal stress relaxation in laser-reshaped cartilaginous implants using OCT-based strain mapping. Laser Phys. Lett. 2020, 17, 085603. [Google Scholar] [CrossRef]
- Jin, Z.; Zhou, Y.; Shen, M.; Wang, Y.; Lu, F.; Zhu, D. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography. J. Biophotonics 2020, 13, e201960074. [Google Scholar] [CrossRef] [PubMed]
- Takakuda, K.; Miyairi, H. Tensile behaviour of fibroblasts cultured in collagen gel. Biomaterials 1996, 17, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Saddiq, Z.A.; Barbenel, J.C.; Grant, M.H. The mechanical strength of collagen gels containing glycosaminoglycans and populated with fibroblasts. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 89, 697–706. [Google Scholar] [CrossRef]
- Cross, V.L.; Zheng, Y.; Choi, N.W.; Verbridge, S.S.; Sutermaster, B.A.; Bonassar, L.J.; Fischbach, C.; Stroock, A.D. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 2010, 31, 8596–8607. [Google Scholar] [CrossRef]
- Ahearne, M.; Wilson, S.L.; Liu, K.-K.; Rauz, S.; El Haj, A.J.; Yang, Y. Influence of cell and collagen concentration on the cell–matrix mechanical relationship in a corneal stroma wound healing model. Exp. Eye Res. 2010, 91, 584–591. [Google Scholar] [CrossRef]
- Zvietcovich, F.; Rolland, J.P.; Grygotis, E.; Wayson, S.; Helguera, M.; Dalecki, D.; Parker, K.J. Viscoelastic characterization of dispersive media by inversion of a general wave propagation model in optical coherence elastography. In Proceedings of the Optical Elastography and Tissue Biomechanics V, San Francisco, CA, USA, 27 January–1 February 2018; pp. 31–41. [Google Scholar]
- Ramier, A.; Eltony, A.M.; Chen, Y.; Clouser, F.; Birkenfeld, J.S.; Watts, A.; Yun, S.-H. In vivo measurement of shear modulus of the human cornea using optical coherence elastography. Sci. Rep. 2020, 10, 17366. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, C.E.; Rnjak-Kovacina, J.; Kaplan, D.L. Corneal tissue engineering: Recent advances and future perspectives. Tissue Eng. Part B Rev. 2015, 21, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Tegtmeyer, S.; Papantoniou, I.; Müller-Goymann, C.C. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur. J. Pharm. Biopharm. 2001, 51, 119–125. [Google Scholar] [CrossRef]
- Reichl, S.; Bednarz, J.; Müller-Goymann, C. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br. J. Ophthalmol. 2004, 88, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Quantock, A.J.; Winkler, M.; Parfitt, G.J.; Young, R.D.; Brown, D.J.; Boote, C.; Jester, J.V. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Exp. Eye Res. 2015, 133, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Pitre, J.J., Jr.; Kirby, M.A.; Li, D.S.; Shen, T.T.; Wang, R.K.; O’Donnell, M.; Pelivanov, I. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: Model and experiments with acoustic micro-tapping OCE. Sci. Rep. 2020, 10, 12983. [Google Scholar] [CrossRef]
- Antman-Passig, M.; Shefi, O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016, 16, 2567–2573. [Google Scholar] [CrossRef]
- Norman, J.J.; Desai, T.A. Control of cellular organization in three dimensions using a microfabricated polydimethylsiloxane–collagen composite tissue scaffold. Tissue Eng. 2005, 11, 378–386. [Google Scholar] [CrossRef]
- Sun, M.G.; Son, T.; Crutison, J.; Guaiquil, V.; Lin, S.; Nammari, L.; Klatt, D.; Yao, X.; Rosenblatt, M.I.; Royston, T.J. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. J. Mech. Behav. Biomed. Mater. 2022, 128, 105100. [Google Scholar] [CrossRef]
Concentrations | Elastic Modulus | Normalized Viscosity |
---|---|---|
3 mg/mL | 1.01 ± 0.12 kPa | 27.71 ± 1.03 Pa·s |
5 mg/mL | 1.26 ± 0.11 kPa | 28.90 ± 1.05 Pa·s |
7 mg/mL | 1.46 ± 0.14 kPa | 33.55 ± 1.03 Pa·s |
Coefficient | 92.25% | 98.67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Feng, Z.; Huang, Z.; Li, C. Characterizing Viscoelasticity of Corneal Stromal Models Using Non-Contact Air-Pulse Optical Coherence Elastography (OCE) and Validating Using Ramp–Hold Relaxation Testing. Photonics 2025, 12, 24. https://doi.org/10.3390/photonics12010024
Zhang Y, Feng Z, Huang Z, Li C. Characterizing Viscoelasticity of Corneal Stromal Models Using Non-Contact Air-Pulse Optical Coherence Elastography (OCE) and Validating Using Ramp–Hold Relaxation Testing. Photonics. 2025; 12(1):24. https://doi.org/10.3390/photonics12010024
Chicago/Turabian StyleZhang, Yilong, Zhengshuyi Feng, Zhihong Huang, and Chunhui Li. 2025. "Characterizing Viscoelasticity of Corneal Stromal Models Using Non-Contact Air-Pulse Optical Coherence Elastography (OCE) and Validating Using Ramp–Hold Relaxation Testing" Photonics 12, no. 1: 24. https://doi.org/10.3390/photonics12010024
APA StyleZhang, Y., Feng, Z., Huang, Z., & Li, C. (2025). Characterizing Viscoelasticity of Corneal Stromal Models Using Non-Contact Air-Pulse Optical Coherence Elastography (OCE) and Validating Using Ramp–Hold Relaxation Testing. Photonics, 12(1), 24. https://doi.org/10.3390/photonics12010024