Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects
Abstract
1. Introduction
2. Theory
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Q.; Painter, O.J.; Agrawal, G.P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 2007, 15, 16604–16644. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.A.; Turner, A.C.; Lipson, M.; Gaeta, A.L. Nonlinear optics in photonic nanowires. Opt. Express 2008, 16, 1300–1320. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ying, Y.; Tong, L. Photonic nanowires: From subwavelength waveguides to optical sensors. Acc. Chem. Res. 2014, 47, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sandgren, E.; Barnhart, M.; Zhu, R.; Huang, G. Photonic Nanostructures Design and Optimization for Solar Cell Application. Photonics 2015, 2, 893–905. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, L.; Wu, G.; Zhu, Y.; Zeng, H. Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides. Nanoscale 2014, 6, 12371–12375. [Google Scholar] [CrossRef]
- Xin, C.; Qi, J.; Zhang, R.; Jin, L.; Zhou, Y. In-situ modal inspection based on transverse second harmonic generation in single CdS nanobelt. Chin. Opt. Lett. 2021, 19, 071901. [Google Scholar] [CrossRef]
- Yu, H.; Fang, W.; Wu, X.; Lin, X.; Tong, L.; Liu, W.; Wang, A.; Shen, Y.R. Single nanowire optical correlator. Nano Lett. 2014, 14, 3487–3490. [Google Scholar] [CrossRef]
- Monat, C.; Grillet, C.; Collins, M.; Clark, A.; Schroeder, J.; Xiong, C.; Li, J.; O’faolain, L.; Krauss, T.F.; Eggleton, B.J. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun. 2014, 5, 3246. [Google Scholar] [CrossRef]
- Gu, F.; Wu, G.; Zhang, L.; Zeng, H. Above-Bandgap Surface-Emitting Frequency Conversion in Semiconductor Nanoribbons with Ultralow Continuous-Wave Pump Power. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 7600106. [Google Scholar]
- Yu, J.; Liu, F.; Gu, Z.; Gu, F.; Zhuang, S. Efficient higher-order nonlinear optical effects in CdSe nanowaveguides. Opt. Express 2018, 26, 6880–6889. [Google Scholar] [CrossRef]
- Ra, Y.-H.; Wang, R.; Woo, S.Y.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-color single nanowire pixels for projection displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Lu, W.; Katsuro, S.; Okuda, R.; Nakayama, N.; Sone, N.; Mizutani, K.; Iwaya, M.; Takeuchi, T.; Kamiyama, S. Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs. Nanoscale Adv. 2022, 4, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Lim, T.; Kim, S.; Park, H.-L.; Ju, S. Tunable-white-light-emitting nanowire sources. Nanotechnology 2010, 21, 255201. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Yu, S.; Bao, Q.; Wu, X.; Chen, B.; Wang, Y.; Xu, Y.; Yang, Z.; Tong, L. Single CdTe nanowire optical correlator for femtojoule pulses. Nano Lett. 2016, 16, 4807–4810. [Google Scholar] [CrossRef]
- Xin, C.; Zhang, J.; Xu, P.; Xie, Y.; Yao, N.; Zhou, N.; Guo, X.; Fang, W.; Tong, L. Self-phase modulation in single CdTe nanowires. Opt. Express 2019, 27, 31800–31809. [Google Scholar] [CrossRef]
- Shaygan, M.; Davami, K.; Kheirabi, N.; Baek, C.K.; Cuniberti, G.; Meyyappan, M.; Lee, J.-S. Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector. Phys. Chem. Chem. Phys. 2014, 16, 22687–22693. [Google Scholar] [CrossRef]
- Matei, E.; Ion, L.; Antohe, S.; Neumann, R.; Enculescu, I. Multisegment CdTe nanowire homojunction photodiode. Nanotechnology 2010, 21, 105202. [Google Scholar] [CrossRef]
- Xin, C.; Wu, H.; Xie, Y.; Yu, S.; Zhou, N.; Shi, Z.; Guo, X.; Tong, L. CdTe microwires as mid-infrared optical waveguides. Opt. Express 2018, 26, 10944–10952. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ding, B.; Shen, J.; Hu, Y.; Gu, H. Homo-epitaxial secondary growth of ZnO nanowire arrays for a UV-free warm white light-emitting diode application. Appl. Opt. 2020, 59, 2498–2504. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, Z.; Huang, Y.H.; Lin, K.H.; Wu, S.T. High-efficiency nanowire light-emitting diodes for augmented reality and virtual reality displays. J. Soc. Inf. Disp. 2023, 31, 211–219. [Google Scholar] [CrossRef]
- Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Aref, O.H.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Full-color InGaN/AlGaN nanowire micro light-emitting diodes grown by molecular beam epitaxy: A promising candidate for next generation micro displays. Micromachines 2019, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, L.; Wu, Y.; Liao, Q. Luminescence emission-modulated based on specific two-photon compound of triazole-conjugated pyrene derivative. RSC Adv. 2017, 7, 19002–19006. [Google Scholar] [CrossRef]
- Gao, Y.; Potasek, M.J. Effects of excited-state absorption on two-photon absorbing materials. Appl. Opt. 2006, 45, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, F.; Xia, T.; Kumar, N.; Hahm, J.-i.; Liu, J.; Wang, Z.L.; Xu, J. Low-threshold two-photon pumped ZnO nanowire lasers. Opt. Express 2009, 17, 7893–7900. [Google Scholar] [CrossRef] [PubMed]
- Otomo, A.; Stegeman, G.I.; Flipse, M.C.; Diemeer, M.B.; Horsthuis, W.H.; Möhlmann, G.R. Nonlinear contrawave mixing devices in poled-polymer waveguides. JOSA B 1998, 15, 759–772. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Harcourt Brace Jovanovich Press: New York, NY, USA, 1992; pp. 62–69. ISBN 0-12-121680-2. [Google Scholar]
- Xin, C.; Fan, C.; Zhang, Z.; Zhou, Y. Dislocation-Driven Growth of Optical Waveguiding CdTe Nano-/Microwires. Cryst. Growth Des. 2022, 22, 5582–5588. [Google Scholar] [CrossRef]
- Gorbach, A.V.; Ding, W. Microfiber-Lithium Niobate on Insulator Hybrid Waveguides for Efficient and Reconfigurable Second-Order Optical Nonlinearity on a Chip. Photonics 2015, 2, 946–956. [Google Scholar] [CrossRef]
- Gusachenko, I.; Truong, V.G.; Frawley, M.C.; Nic Chormaic, S. Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies. Photonics 2015, 2, 795–807. [Google Scholar] [CrossRef]
- Huang, K.; Yang, S.; Tong, L. Modeling of evanescent coupling between two parallel optical nanowires. Appl. Opt. 2007, 46, 1429–1434. [Google Scholar] [CrossRef]
- Yuan, Z.; Fang, H.; Xie, Y.; Zhang, J.; Liu, K.; Guo, X.; Tong, L. Variable Optical Attenuator Based on a PDMS-Embedded Microfiber Coupler. IEEE Photonics Technol. Lett. 2024, 36, 449–452. [Google Scholar] [CrossRef]
- Choi, S.B.; Song, M.S.; Kim, Y. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination. Nanotechnology 2018, 29, 145702. [Google Scholar] [CrossRef] [PubMed]
- Rakovich, Y.P.; Volkov, Y.; Sapra, S.; Susha, A.S.; Döblinger, M.; Donegan, J.F.; Rogach, A.L. CdTe nanowire networks: Fast self-assembly in solution, internal structure, and optical properties. J. Phys. Chem. C 2007, 111, 18927–18931. [Google Scholar] [CrossRef]
- Liao, F.; Wang, Y.; Peng, T.; Peng, J.; Gu, Z.; Yu, H.; Chen, T.; Yu, J.; Gu, F. Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a Femto-Joule level. Adv. Opt. Mater. 2018, 6, 1701012. [Google Scholar] [CrossRef]
Central Wavelength (nm) | Maximum Output Intensity (a.u.) | |
---|---|---|
No. 1 | 713.41 | 0.9263 |
No. 2 | 712.83 | 0.9120 |
No. 3 | 712.64 | 0.8902 |
No. 4 | 712.06 | 0.8626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Xu, L.; Fan, C.; Zhang, Y.; Yang, H.; Li, M.; Xin, C. Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects. Photonics 2024, 11, 1068. https://doi.org/10.3390/photonics11111068
Guo L, Xu L, Fan C, Zhang Y, Yang H, Li M, Xin C. Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects. Photonics. 2024; 11(11):1068. https://doi.org/10.3390/photonics11111068
Chicago/Turabian StyleGuo, Lijun, Lihao Xu, Changjiang Fan, Yunfei Zhang, Hao Yang, Mengwei Li, and Chenguang Xin. 2024. "Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects" Photonics 11, no. 11: 1068. https://doi.org/10.3390/photonics11111068
APA StyleGuo, L., Xu, L., Fan, C., Zhang, Y., Yang, H., Li, M., & Xin, C. (2024). Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects. Photonics, 11(11), 1068. https://doi.org/10.3390/photonics11111068