Tunable Polarization-Selective Absorption by Gating Ultrathin TiN Films in the Near-Infrared Region
Abstract
:1. Introduction
2. Design and Simulations
2.1. The UTGM Design
2.2. The GTHM Design
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Sun, B.; Pan, W.B.; Cui, J.; Wu, X.; Luo, X. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 2017, 7, srep42302. [Google Scholar] [CrossRef] [PubMed]
- Sherrott, M.C.; Hon, P.W.C.; Fountaine, K.T.; Garcia, J.C.; Ponti, S.M.; Brar, V.W.; Sweatlock, L.A.; Atwater, H.A. Experimental Demonstration of >230 degrees Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Lett. 2017, 17, 3027–3034. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.H.; Cao, X.Y.; Yang, F.; Gao, J.; Xu, S.; Li, M.; Chen, X.; Zhao, Y.; Zheng, Y.; Li, S. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 2016, 6, 35692. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.F.; Dong, F.L.; Yue, F.Y.; Dong, F.; Yue, F.; Zhang, C.; Xu, L.; Song, Z.; Chen, M.; Chen, P.; et al. Polarization Encoded Color Image Embedded in a Dielectric Metasurface. Adv. Mater. 2018, 30, e1707499. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.J.; Ishii, S.; Kildishev, A.V.; Shalaev, V.M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light. Sci. Appl. 2013, 2, e72. [Google Scholar] [CrossRef]
- High, A.A.; Devlin, R.C.; Dibos, A.; Polking, M.; Wild, D.S.; Perczel, J.; de Leon, N.P.; Lukin, M.D.; Park, H. Visible-frequency hyperbolic metasurface. Nature 2015, 522, 192–196. [Google Scholar] [CrossRef]
- He, Q.; Sun, S.L.; Zhou, L. Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research 2019, 2019, 1849272. [Google Scholar] [CrossRef]
- Choudhury, S.M.; Wang, D.; Chaudhuri, K.; DeVault, C.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Material platforms for optical metasurfaces. Nanophotonics 2018, 7, 959–987. [Google Scholar] [CrossRef]
- Chu, C.H.; Tseng, M.L.; Chen, J.; Wu, P.C.; Chen, Y.-H.; Wang, H.-C.; Chen, T.-Y.; Hsieh, W.T.; Wu, H.J.; Sun, G.; et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 2016, 10, 986–994. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, P.C.; Sokhoyan, R.; Mauser, K.; Glaudell, R.; Kafaie Shirmanesh, G.; Atwater, H.A. Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. Nano Lett. 2019, 19, 3961–3968. [Google Scholar] [CrossRef]
- Miao, Z.Q.; Wu, Q.; Li, X.; He, Q.; Ding, K.; An, Z.; Zhang, Y.; Zhou, L. Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces. Phys. Rev. X 2015, 5, 041027. [Google Scholar] [CrossRef]
- Shirmanesh, G.K.; Sokhoyan, R.; Pala, R.A.; Atwater, H.A. Dual-Gated Active Metasurface at 1550 nm with Wide (>300 degrees) Phase Tunability. Nano Lett. 2018, 18, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.H.; Massaouti, M.; Gokkavas, M.; Manceau, J.-M.; Ozbay, E.; Kafesaki, M.; Koschny, T.; Tzortzakis, S.; Soukoulis, C.M. Optically Implemented Broadband Blueshift Switch in the Terahertz Regime. Phys. Rev. Lett. 2011, 106, 037403. [Google Scholar] [CrossRef] [PubMed]
- Resler, D.P.; Hobbs, D.S.; Sharp, R.C.; Friedman, L.J.; Dorschner, T.A. High-efficiency liquid-crystal optical phased-array beam steering. Opt. Lett. 1996, 21, 689–691. [Google Scholar] [CrossRef]
- Shim, S.-H.; Strasfeld, D.B.; Fulmer, E.C.; Zanni, M.T. Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation. Opt. Lett. 2006, 31, 838–840. [Google Scholar] [CrossRef]
- Boltasseva, A.; Atwater, H.A. Low-Loss Plasmonic Metamaterial. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Guo, W.P.; Mishra, R.; Cheng, C.W.; Wu, B.H.; Chen, L.J.; Lin, M.T.; Gwo, S. Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold. ACS Photonics 2019, 6, 1848–1854. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef]
- Reddy, H.; Guler, U.; Kudyshev, Z.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films. ACS Photonics 2017, 4, 1413–1420. [Google Scholar] [CrossRef]
- Shah, D.; Catellani, A.; Reddy, H.; Kinsey, N.; Shalaev, V.M.; Boltasseva, A.; Calzolari, A. Controlling the Plasmonic Properties of Ultrathin TiN Films at the Atomic Level. ACS Photonics 2018, 5, 2816–2824. [Google Scholar] [CrossRef]
- Reddy, H.; Shah, D.; Kinsey, N.; Shalaev, V.M.; Boltasseva, A. Ultra-thin plasmonic metal nitrides: Tailoring optical properties to photonic applications. In Proceedings of the International Conference on Optical MEMS and Nanophotonics (OMN), Santa Fe, NM, USA, 13–17 August 2017. [Google Scholar]
- Jiang, H.; Reddy, H.; Shah, D.; Kudyshev, Z.A.; Choudhury, S.; Wang, D.; Jiang, Y.; Kildishev, A.V. Modulating phase by metasurfaces with gated ultra-thin TiN films. Nanoscale 2019, 11, 11167–11172. [Google Scholar] [CrossRef] [PubMed]
- Reddy, H.; Guler, U.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Temperature-dependent optical properties of gold thin films. Opt. Mater. Express 2016, 6, 2776–2802. [Google Scholar] [CrossRef]
- Prokopeva, L.J.; Borneman, J.D.; Kildishev, A.V. Optical Dispersion Models for Time-Domain Modeling of Metal-Dielectric Nanostructures. IEEE Trans. Magn. 2011, 47, 1150–1153. [Google Scholar] [CrossRef]
- Shah, D.; Reddy, H.; Kinsey, N.; Shalaev, V.M.; Boltasseva, A. Optical Properties of Plasmonic Ultrathin TiN Films. Adv. Opt. Mater. 2017, 5, 1700065. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, S.; Yin, R.; Li, L.; Lou, Z.; Shen, G. Recent advanced applications of ion-gel in ionic-gated transistor. Npj Flex. Electron. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Menzel, C.; Rockstuhl, C.; Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 2010, 82, 053811. [Google Scholar] [CrossRef]
- Huang, H.; Qin, S.; Jie, K.Q.; Guo, J.; Dai, Q.-F.; Liu, H.; Meng, H.; Wang, F.; Yang, X.; Wei, Z. Dynamic generation of giant linear and circular dichroism via phase-change metasurface. Opt. Express 2021, 29, 40759–40769. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Huang, J.; Zhu, W.; Wang, Y.; V. Kildishev, A. Tunable Polarization-Selective Absorption by Gating Ultrathin TiN Films in the Near-Infrared Region. Photonics 2024, 11, 917. https://doi.org/10.3390/photonics11100917
Jiang H, Huang J, Zhu W, Wang Y, V. Kildishev A. Tunable Polarization-Selective Absorption by Gating Ultrathin TiN Films in the Near-Infrared Region. Photonics. 2024; 11(10):917. https://doi.org/10.3390/photonics11100917
Chicago/Turabian StyleJiang, Huan, Junhao Huang, Wenchang Zhu, Yetian Wang, and Alexander V. Kildishev. 2024. "Tunable Polarization-Selective Absorption by Gating Ultrathin TiN Films in the Near-Infrared Region" Photonics 11, no. 10: 917. https://doi.org/10.3390/photonics11100917
APA StyleJiang, H., Huang, J., Zhu, W., Wang, Y., & V. Kildishev, A. (2024). Tunable Polarization-Selective Absorption by Gating Ultrathin TiN Films in the Near-Infrared Region. Photonics, 11(10), 917. https://doi.org/10.3390/photonics11100917