Enhanced Circular Dichroism by F-Type Chiral Metal Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Spectral Properties of Circular Dichroism of Metal Nanostructures
3.2. Effects of Metal Nanostructure Parameters on Chiral Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Y.H.; Kang, L.; Lan, S.F.; Rodrigues, S.; Cai, W.S. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 2014, 14, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.T.; Dong, G.H.; Wang, W.; Chen, T.; Lv, T.T.; Lv, B.; Zhu, Z.; Li, Y.X.; Guan, C.Y.; Shi, J.H. Angle enhanced circular dichroism in bilayer 90 degrees-twisted metamaterial. Opt. Express 2020, 28, 15071–15080. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, T.; Petronijevic, E.; Piton, M.R.; Sibilia, C. Demonstration of extrinsic chirality of photoluminescence with semiconductor-metal hybrid nanowires. Sci. Rep. 2019, 9, 5040. [Google Scholar] [CrossRef]
- Khanikaev, A.B.; Arju, N.; Fan, Z.; Purtseladze, D.; Lu, F.; Lee, J.; Sarriugarte, P.; Schnell, M.; Hillenbrand, R.; Belkin, M.A.; et al. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials. Nat. Commun. 2016, 7, 12045. [Google Scholar] [CrossRef] [PubMed]
- Khorashad, L.K.; Besteiro, L.V.; Correa-Duarte, M.A.; Burger, S.; Wang, Z.M.M.; Govorov, A.O. Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc. 2020, 142, 4193–4205. [Google Scholar] [CrossRef]
- Artar, A.; Yanik, A.A.; Altug, H. Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 2009, 95, 051105. [Google Scholar] [CrossRef]
- Wang, X.M.; Zheng, Z.B.; Xu, N.S.; Wang, W.L.; Chen, H.J.; Deng, S.Z. A Nano-Imaging Study of Graphene Edge Plasmons with Chirality-Dependent Dispersions. Adv. Opt. Mater. 2021, 9, 2100207. [Google Scholar] [CrossRef]
- Sammito, D.; Zacco, G.; Zilio, P.; Giorgis, V.; Martucci, A.; Janusonis, J.; Romanato, F. Design and fabrication of a light trapping method for photovoltaic devices based on plasmonic gratings. Microelectron. Eng. 2012, 98, 440–443. [Google Scholar] [CrossRef]
- Gusev, V.E.; Ruello, P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 2018, 5, 031101. [Google Scholar] [CrossRef]
- Pinapati, P.; Cherukulappurath, S. Hybrid dielectric-plasmonic nanocomposite arrays for bulk and local refractive index sensing. Plasmonics 2020, 15, 441–447. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Segawa, H.; Ishii, K. Magneto-chiral dichroism of organic compounds. Angew. Chem. Int. Ed. 2011, 50, 9133–9136. [Google Scholar] [CrossRef] [PubMed]
- Nicu, V.P.; Mándi, A.; Kurtán, T.; Polavarapu, P.L. On the Complementarity of ECD and VCD Techniques. Chirality 2014, 26, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Iwata, N.; Kitanaka, S. Tetracyclic Chromane Derivatives from Rhododendron anthopogonoides. J. Nat. Prod. 2010, 73, 1203–1206. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as a broadband circular polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef]
- Reichelt, M.; Koch, S.W.; Krasavin, A.V.; Moloney, J.V.; Schwanecke, A.S.; Stroucken, T.; Wright, E.M.; Zheludev, N.I. Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures. Appl. Phys. B 2006, 84, 97–101. [Google Scholar] [CrossRef]
- Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R.V.; Lapthorn, A.J.; Kelly, S.M.; Barron, L.D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using supergirl fields. Nat. Nanotechnol. 2010, 5, 783–787. [Google Scholar] [CrossRef]
- Shi, J.H.; Zhu, Z.; Ma, H.F.; Jiang, W.X.; Cui, T.J. Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial. J. Appl. Phys. 2012, 112, 073522. [Google Scholar] [CrossRef]
- Yue, S.; Liu, S.; Hou, Y.; Zhang, Z.C. Tailorable chiral optical response through coupling among plasmonic meta-atoms with distinct shapes. Opt. Lett. 2018, 43, 1111–1114. [Google Scholar] [CrossRef]
- Valev, V.K.; Smisdom, N.; Silhanek, A.V.; Clercq, B.; De Gillijns, W.; Ameloot, M.; Moshchalkov, V.V.; Verbiest, T. Plasmonic ratchet wheels: Switching circular dichroism by arranging chiral nanostructures. Nano Lett. 2009, 9, 3945–3948. [Google Scholar] [CrossRef]
- Zu, S.; Bao, Y.J.; Fang, Z.Y. Planar plasmonic chiral nanostructures. Nanoscale 2016, 8, 3900–3905. [Google Scholar] [CrossRef]
- Wang, Z.; Teh, B.H.; Wang, Y.; Adamo, G.; Teng, J.H.; Sun, H.D. Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes. Appl. Phys. Lett. 2017, 110, 201108. [Google Scholar] [CrossRef]
- Ghaemi, H.F.; Tineke, T.; Grupp, D.E.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779. [Google Scholar] [CrossRef]
- Mulholland, G.W.; Bohren, C.F.; Fuller, K.A. Light scattering by agglomerates: Coupled electric and magnetic dipole method. Langmuir 1994, 10, 2533–2546. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Cohen, A.E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 2010, 104, 163901. [Google Scholar] [CrossRef] [PubMed]
- Li, H.A.; Tian, X.R.; Huang, Y.Z.; Fang, L.; Fang, Y.R. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by the interplay of electric and magnetic dipoles. Nanoscale 2016, 8, 3720–3728. [Google Scholar]
- Fu, T.; Qu, Y.; Wang, T.K.; Wang, G.; Wang, Y.K.; Li, H.; Li, J.; Wang, L.; Zhang, Z.Y. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition. J. Phys. Chem. C 2017, 121, 1299–1304. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, F.; Qu, Y.; Wang, T.K.; Chen, Y.Y.; Bai, Y.; Zhang, Z.Y. Enhanced circular dichroism of crossed nanorods with nanowire. Appl. Opt. 2018, 57, 6721–6724. [Google Scholar] [CrossRef]
- Qu, Y.; Huang, L.S.; Wang, L.; Zhang, Z.Y. Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure. Opt. Express 2017, 25, 5480–5487. [Google Scholar] [CrossRef]
- Aba, T.; Qu, Y.; Abudukelimu, A.; Ullah, H.; Zhang, Z.Y. Chiral response of a metasurface composed of nanoholes and tilted nanorods. Appl. Opt. 2019, 58, 5936–5941. [Google Scholar] [CrossRef]
- Aba, T.; Qu, Y.; Bai, J.R.; Zhang, Z.Y. Studies of circular dichroism of planar composite metal nanostructure arrays. Acta Phys. Sin. 2020, 69, 107802. [Google Scholar]
- Zhang, H.; Wang, Y.K.; Luo, L.N.; Wang, H.Q.; Zhang, Z.Y. Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes. J. Nanosci. Nanotechnol. 2017, 17, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Adamo, G.; Teh, B.H.; Wu, Q.Y.S.; Teng, J.H.; Sun, H.D. A novel chiral metasurface with controllable circular dichroism induced by coupling localized and propagating modes. Adv. Opt. Mater. 2016, 4, 883–888. [Google Scholar] [CrossRef]
Chiral Nanostructures | Optical Chirality | Wavelength Range (nm) | CD Value (%) | Reference |
---|---|---|---|---|
Crossed nanorods with nanowire | 600–1000 | 0.18/−0.15 | [28] | |
Twisted Z-shaped nanostructure(TZN) | 500–1000 | 0.868 | [29] | |
Nanoholes in mental film/Tilted nanorods | 600–2000 | 0.12 | [30] | |
Nanowire/G-type nanostructure | 300–6000 | −0.309/0.44 | [31] | |
Gold bilayer slit array/rectangular holes | 400–3000 | 0.167 | [32] | |
Nano slits milled in gold layer | 600–800 | 0.95 | [33] | |
F-type metal nanostructure | 620–780 | −7.5/1.5 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Liu, J.; Yang, H.; Liu, H.; Zeng, G.; Huang, B. Enhanced Circular Dichroism by F-Type Chiral Metal Nanostructures. Photonics 2023, 10, 1028. https://doi.org/10.3390/photonics10091028
Luo Y, Liu J, Yang H, Liu H, Zeng G, Huang B. Enhanced Circular Dichroism by F-Type Chiral Metal Nanostructures. Photonics. 2023; 10(9):1028. https://doi.org/10.3390/photonics10091028
Chicago/Turabian StyleLuo, Yuyuan, Jin Liu, Haima Yang, Haishan Liu, Guohui Zeng, and Bo Huang. 2023. "Enhanced Circular Dichroism by F-Type Chiral Metal Nanostructures" Photonics 10, no. 9: 1028. https://doi.org/10.3390/photonics10091028
APA StyleLuo, Y., Liu, J., Yang, H., Liu, H., Zeng, G., & Huang, B. (2023). Enhanced Circular Dichroism by F-Type Chiral Metal Nanostructures. Photonics, 10(9), 1028. https://doi.org/10.3390/photonics10091028