Parameter Optimization for Modulation-Enhanced External Cavity Resonant Frequency in Fiber Fault Detection
Abstract
:1. Introduction
2. Principle and Theoretical Model
2.1. Principle
2.2. Theoretical Model
3. Numerical Simulation
3.1. Sweeping Method
3.2. Optimization of Sweeping Range
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Yin, M.Z.; Luo, Z.B.; Wang, X.W.; Rong, L.M.; Li, Z.H. Architecture and key digital signal processing techniques of a next-generation passive optical network. J. Opt. Commun. Netw. 2023, 15, A82. [Google Scholar] [CrossRef]
- Ganesan, E.; Hwang, I.-S.; Liem, A.T.; Ab-Rahman, M.S. 5G-Enabled Tactile Internet Resource Provision via Software-Defined Optical Access Networks (SDOANs). Photonics 2021, 8, 140. [Google Scholar] [CrossRef]
- Al-Azez, Z.T.; Lawey, A.Q.; El-Gorashi, T.E.; Elmirghani, J.M. Energy efficient IoT virtualization framework with passive optical access networks. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016. [Google Scholar] [CrossRef]
- Hutcheson, L. FTTx: Current Status and the Future. IEEE Commun. Mag. 2008, 46, 90–95. [Google Scholar] [CrossRef]
- Effenberger, F.; Cleary, D.; Haran, O.; Kramer, G.; Li, R.D.; Oron, M.; Pfeiffer, T. An introduction to PON technologies [Topics in Optical Communications]. IEEE Commun. Mag. 2007, 45, S17–S25. [Google Scholar] [CrossRef]
- Caviglia, F.; Di, B.V.C. Optical maintenance in PONs. Opt. Fiber Technol. 1999, 5, 349. [Google Scholar] [CrossRef]
- Barnoski, M.K.; Rourke, M.D.; Jensen, S.M.; Melville, R.T. Optical time domain reflectometer. Appl. Opt. 1977, 16, 2375. [Google Scholar] [CrossRef]
- International Telecommunication Union. G.652: Characteristics of a Single-Mode Optical Fiber and Cable; International Telecommunication Union: Geneva, Switzerland, 2019. [Google Scholar]
- International Telecommunication Union. G.984: Digital Sections and Digital Line System—Optical Line Systems for Local and Access Networks; International Telecommunication Union: Geneva, Switzerland, 2012. [Google Scholar]
- Abdelli, K.; Grießer, H.; Tropschug, C.; Pachnicke, S. Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory. J. Light. Technol. 2021, 40, 2254–2264. [Google Scholar] [CrossRef]
- Hu, W.-G.; Wan, S.-P.; Li, B.-J.; Zhong, L.; Yu, W. Study on the Detection Signal of OTDR Based on Wavelet Denoising and Approximate Entropy. In Proceedings of the 2012 Symposium on Photonics and Optoelectronics, Shanghai, China, 21–23 May 2012. [Google Scholar] [CrossRef]
- Sahu, P.K.; Gowre, S.C.; Mahapatra, S. Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthonormal sequence. IET Optoelectron. 2008, 2, 128–133. [Google Scholar] [CrossRef]
- Xiao, L.; Cheng, X.; Xu, Z.; Huang, Q. Lengthened Simplex Codes With Complementary Correlation for Faulty Branch Detection in TDM-PON. IEEE Photon-Technol. Lett. 2013, 25, 2315–2318. [Google Scholar] [CrossRef]
- Lee, D.; Yoon, H.; Kim, P.; Park, J.; Kim, N.Y.; Park, N. SNR enhancement of OTDR using biorthogonal codes and generalized inverses. IEEE Photon-Technol. Lett. 2004, 17, 163–165. [Google Scholar] [CrossRef] [Green Version]
- Nazarathy, M.; Newton, S.A.; Giffard, R.P.; Moberly, D.S.; Sischka, F.; Trutna, W.R.; Foster, S. Real-time long range complementary correlation optical time domain reflectometer. J. Light. Technol. 1989, 7, 24–38. [Google Scholar] [CrossRef]
- Jones, M.D. Using simplex codes to improve OTDR sensitivity. IEEE Photon-Technol. Lett. 1993, 5, 822–824. [Google Scholar] [CrossRef]
- Yao, Z.; Mauldin, T.; Xu, Z.; Hefferman, G.; Wei, T. An Integrated OFDR System Using Combined Swept-Laser Linearization and Phase Error Compensation. IEEE Trans. Instrum. Meas. 2020, 70, 1–8. [Google Scholar] [CrossRef]
- Oberson, P.; Huttner, B.; Guinnard, O.; Guinnard, L.; Ribordy, G.; Gisin, N. Optical frequency domain reflectometry with a narrow linewidth fiber laser. IEEE Photon-Technol. Lett. 2000, 12, 867–869. [Google Scholar] [CrossRef]
- Yao, Z.; Mauldin, T.; Xu, Z.; Hefferman, G.; Wei, T. Compact multifunction digital OFDR system without using an auxiliary interferometer. Appl. Opt. 2021, 60, 7523–7529. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Wang, A. Chaotic Correlation Optical Time Domain Reflectometer Utilizing Laser Diode. IEEE Photon-Technol. Lett. 2008, 20, 1636–1638. [Google Scholar] [CrossRef]
- Wang, Z.N.; Fan, M.Q.; Zhang, L.; Wu, H.; Churkin, D.V.; Li, Y.; Qian, X.Y.; Rao, Y.J. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source. Opt. Express 2015, 23, 15514–15520. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Y.; Shan, Y.; Sun, Z.; Qiao, W.; Zhang, Y. Enhanced ν -optical time domain reflectometry using gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector. Opt. Eng. 2016, 55, 94101. [Google Scholar] [CrossRef]
- Ivanov, H.; Leitgeb, E.; Pezzei, P.; Freiberger, G. Experimental characterization of SNSPD receiver technology for deep space FSO under laboratory testbed conditions. Optik 2019, 195, 163101. [Google Scholar] [CrossRef]
- Shentu, G.-L.; Sun, Q.-C.; Jiang, X.; Wang, X.-D.; Pelc, J.S.; Fejer, M.M.; Zhang, Q.; Pan, J.-W. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector. Opt. Express 2013, 21, 24674–24679. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Slattery, O.; Tang, X. Single photon frequency up-conversion and its applications. Phys. Rep. 2012, 521, 69–94. [Google Scholar] [CrossRef]
- Eraerds, P.; Legre, M.; Zhang, J.; Zbinden, H.; Gisin, N. Photon Counting OTDR: Advantages and Limitations. J. Light. Technol. 2010, 28, 952–964. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Zhao, T.; Wang, Y.; Wang, A. High-Sensitivity Fiber Fault Detection Method Using Feedback-Delay Signature of a Modulated Semiconductor Laser. Photonics 2022, 9, 454. [Google Scholar] [CrossRef]
- Arbel, D.; Eyal, A. Dynamic optical frequency domain reflectometry. Opt. Express 2014, 22, 8823–8830. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Petermann, K. Microwave modulation characteristics of semiconductor lasers with optical feedback. Electron. Lett. 1989, 25, 1369–1371. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, M.; Guo, H.; Shi, Z.; Guo, Y.; Zhao, T.; Wang, A. Parameter Optimization for Modulation-Enhanced External Cavity Resonant Frequency in Fiber Fault Detection. Photonics 2023, 10, 822. https://doi.org/10.3390/photonics10070822
Li X, Zhang M, Guo H, Shi Z, Guo Y, Zhao T, Wang A. Parameter Optimization for Modulation-Enhanced External Cavity Resonant Frequency in Fiber Fault Detection. Photonics. 2023; 10(7):822. https://doi.org/10.3390/photonics10070822
Chicago/Turabian StyleLi, Xiuzhu, Min Zhang, Haoran Guo, Zixiong Shi, Yuanyuan Guo, Tong Zhao, and Anbang Wang. 2023. "Parameter Optimization for Modulation-Enhanced External Cavity Resonant Frequency in Fiber Fault Detection" Photonics 10, no. 7: 822. https://doi.org/10.3390/photonics10070822
APA StyleLi, X., Zhang, M., Guo, H., Shi, Z., Guo, Y., Zhao, T., & Wang, A. (2023). Parameter Optimization for Modulation-Enhanced External Cavity Resonant Frequency in Fiber Fault Detection. Photonics, 10(7), 822. https://doi.org/10.3390/photonics10070822