Identification of Rice Freshness Using Terahertz Imaging and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Image Acquisition
2.3. Spectral Information Extraction
2.4. Partial Least Squares Regression Analysis
2.5. 1D-VGG19 Network
2.6. 1D-Inception-Renest-v2 Network
2.7. 1D-VGG19-Inception-ResNet-A Network
2.8. Model Evaluation Indicators
3. Results and Discussion
3.1. Discrimination of Spectral Validity
3.2. Discrimination Results of Different Classification Networks
3.2.1. Identification of Rice Freshness by 1D-VGG19 Network
3.2.2. Identification of Rice Freshness by 1D-Inception-ResNet-V2 Network
3.2.3. Identification of Rice Freshness by 1D-VGG19-Inception-ResNet-A Network
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for global nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Perretti, G.; Miniati, E.; Montanari, L.; Fantozzi, P. Improving the value of rice by-products by SFE. J. Supercrit. Fluid. 2003, 26, 63–71. [Google Scholar] [CrossRef]
- Abbas, A.; Murtaza, S.; Aslam, F.; Khawar, A.; Rafique, S.; Naheed, S. Effect of processing on nutritional value of rice (Oryza sativa). World J. Med. Sci. 2011, 6, 68–73. [Google Scholar]
- Han, X.; Jing, X.P.; Zhang, L.L.; Zhang, L.W. Review on retrogradation properties and control technology of rice starch. J. Harbin Inst. Technol. 2016, 48, 126–130. [Google Scholar]
- Shi, J.; Wu, M.; Quan, M. Effects of protein oxidation on gelatinization characteristics during rice storage. J. Cereal. Sci. 2017, 75, 228–233. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, H.; Chen, Q. Qualitative identification of rice actual storage period using olfactory visualization technique combined with chemometrics analysis. Microchem. J. 2020, 159, 105339. [Google Scholar] [CrossRef]
- Bogue, R. Sensing with terahertz radiation: A review of recent progress. Sensor. Rev. 2018, 38, 216–222. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz spectroscopy and imaging: A review on agricultural applications. Comput. Electron. Agr. 2020, 177, 105628. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, L.; Shi, C.; Wu, X.; Chen, X.; Wu, W.; Peng, Y. Qualitative and quantitative analysis of caffeine in medicines by terahertz spectroscopy using machine learning method. IEEE Access 2021, 9, 140008–140021. [Google Scholar] [CrossRef]
- Wang, B.; Meng, K.; Song, T.; Li, Z. Qualitative detection of amino acids in a mixture with terahertz spectroscopic imaging. JOSA B 2022, 39, A18–A24. [Google Scholar] [CrossRef]
- Hu, J.; Xu, Z.; Li, M.; He, Y.; Sun, X.; Liu, Y. Detection of foreign-body in milk powder processing based on terahertz imaging and spectrum. J. Infrared Millim. Terahertz Waves 2021, 42, 878–892. [Google Scholar] [CrossRef]
- Bin, L.; Zhao-yang, H.; Hui-zhou, C.; Ai-guo, O.Y. Identification of different parts of Panax notoginseng based on terahertz spectroscopy. J. Anal. Sci. Technol. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Chen, J.; Hong, R. Fault recognition of large-size low-speed slewing bearing based on improved deep belief network. J. Vib. Control 2022, OnlineFirst. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Li, Y.; Du, Q.; Xi, B.; Hu, J. Classification of hyperspectral imagery using a new fully convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 292–296. [Google Scholar] [CrossRef]
- Dey, N.; Zhang, Y.D.; Rajinikanth, V.; Pugalenthi, R.; Raja, N.S.M. Customized VGG19 architecture for pneumonia detection in chest X-rays. Pattern. Recogn. Lett. 2021, 143, 67–74. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, T.; He, P.; Chen, Q. Quantitative analysis of fatty acid value during rice storage based on olfactory visualization sensor technology. Sens. Actuators B Chem. 2020, 309, 127816. [Google Scholar] [CrossRef]
- Wang, T.; She, N.; Wang, M.; Zhang, B.; Qin, J.; Dong, J.; Wang, S. Changes in Physicochemical Properties and Qualities of Red Brown Rice at Different Storage Temperatures. Foods 2021, 10, 2658. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, H.; Hao, S.; Qiu, K.; Gao, H.; Gao, L.; Zheng, Z. Insights into the water status in hydrous minerals using terahertz time-domain spectroscopy. Sci. Rep. 2019, 9, 9265. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Liu, Y.; Yuan, X.; Chen, Q. Research of image recognition method based on enhanced inception-ResNet-V2. Multimed. Tools. Appl. 2022, 81, 34345–34365. [Google Scholar] [CrossRef]
- Sarkar, A.; Karki, V.; Aggarwal, S.K.; Maurya, G.S.; Kumar, R.; Rai, A.K.; Russo, R.E. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy. Spectrochim. Acta B 2015, 108, 8–14. [Google Scholar] [CrossRef]
- Mateen, M.; Wen, J.; Song, S.; Huang, Z. Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 2018, 11, 1. [Google Scholar] [CrossRef]
- Mascarenhas, S.; Agarwal, M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; pp. 96–99. [Google Scholar]
- Thomas, A.; Harikrishnan, P.M.; Palanisamy, P.; Gopi, V.P. Moving vehicle candidate recognition and classification using inception-resnet-v2. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 467–472. [Google Scholar]
- Liu, D.; Wu, Y.; He, Y.; Qin, L.; Zheng, B. Multi-Object Detection of Chinese License Plate in Complex Scenes. Comput. Syst. Sci. Eng. 2021, 36, 145–156. [Google Scholar] [CrossRef]
- Siciarz, P.; McCurdy, B. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans. Phys. Med. Biol. 2022, 67, 115007. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, D.; Guo, X.; Yang, L. Urban traffic road surface condition recognition algorithm basedon improved Inception-ResNet-v2. Sci. Technol. Eng. 2022, 22, 2524–2530. [Google Scholar]
- Ibrahim, D.M.; Elshennawy, N.M.; Sarhan, A.M. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput. Biol. Med. 2021, 132, 104348. [Google Scholar] [CrossRef] [PubMed]
Network Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Testing-Time (s) |
---|---|---|---|---|---|
1D-VGG19 | 97.59 | 97.70 | 97.13 | 97.39 | 113 |
1D-Inception-ResNet-V2 | 98.39 | 98.20 | 98.37 | 98.28 | 466 |
1D-VGG19-Inception-ResNet-A | 99.80 | 99.83 | 99.74 | 99.78 | 204 |
LiteVGGNet [27] | 91.57 | 90.82 | 91.40 | 91.05 | 115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, Y.; Ge, H.; Jiang, Y.; Qin, Y. Identification of Rice Freshness Using Terahertz Imaging and Deep Learning. Photonics 2023, 10, 547. https://doi.org/10.3390/photonics10050547
Wang Q, Zhang Y, Ge H, Jiang Y, Qin Y. Identification of Rice Freshness Using Terahertz Imaging and Deep Learning. Photonics. 2023; 10(5):547. https://doi.org/10.3390/photonics10050547
Chicago/Turabian StyleWang, Qian, Yuan Zhang, Hongyi Ge, Yuying Jiang, and Yifei Qin. 2023. "Identification of Rice Freshness Using Terahertz Imaging and Deep Learning" Photonics 10, no. 5: 547. https://doi.org/10.3390/photonics10050547
APA StyleWang, Q., Zhang, Y., Ge, H., Jiang, Y., & Qin, Y. (2023). Identification of Rice Freshness Using Terahertz Imaging and Deep Learning. Photonics, 10(5), 547. https://doi.org/10.3390/photonics10050547