Identification of Rice Freshness Using Terahertz Imaging and Deep Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Image Acquisition
2.3. Spectral Information Extraction
2.4. Partial Least Squares Regression Analysis
2.5. 1D-VGG19 Network
2.6. 1D-Inception-Renest-v2 Network
2.7. 1D-VGG19-Inception-ResNet-A Network
2.8. Model Evaluation Indicators
3. Results and Discussion
3.1. Discrimination of Spectral Validity
3.2. Discrimination Results of Different Classification Networks
3.2.1. Identification of Rice Freshness by 1D-VGG19 Network
3.2.2. Identification of Rice Freshness by 1D-Inception-ResNet-V2 Network
3.2.3. Identification of Rice Freshness by 1D-VGG19-Inception-ResNet-A Network
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for global nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Perretti, G.; Miniati, E.; Montanari, L.; Fantozzi, P. Improving the value of rice by-products by SFE. J. Supercrit. Fluid. 2003, 26, 63–71. [Google Scholar] [CrossRef]
- Abbas, A.; Murtaza, S.; Aslam, F.; Khawar, A.; Rafique, S.; Naheed, S. Effect of processing on nutritional value of rice (Oryza sativa). World J. Med. Sci. 2011, 6, 68–73. [Google Scholar]
- Han, X.; Jing, X.P.; Zhang, L.L.; Zhang, L.W. Review on retrogradation properties and control technology of rice starch. J. Harbin Inst. Technol. 2016, 48, 126–130. [Google Scholar]
- Shi, J.; Wu, M.; Quan, M. Effects of protein oxidation on gelatinization characteristics during rice storage. J. Cereal. Sci. 2017, 75, 228–233. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, H.; Chen, Q. Qualitative identification of rice actual storage period using olfactory visualization technique combined with chemometrics analysis. Microchem. J. 2020, 159, 105339. [Google Scholar] [CrossRef]
- Bogue, R. Sensing with terahertz radiation: A review of recent progress. Sensor. Rev. 2018, 38, 216–222. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz spectroscopy and imaging: A review on agricultural applications. Comput. Electron. Agr. 2020, 177, 105628. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, L.; Shi, C.; Wu, X.; Chen, X.; Wu, W.; Peng, Y. Qualitative and quantitative analysis of caffeine in medicines by terahertz spectroscopy using machine learning method. IEEE Access 2021, 9, 140008–140021. [Google Scholar] [CrossRef]
- Wang, B.; Meng, K.; Song, T.; Li, Z. Qualitative detection of amino acids in a mixture with terahertz spectroscopic imaging. JOSA B 2022, 39, A18–A24. [Google Scholar] [CrossRef]
- Hu, J.; Xu, Z.; Li, M.; He, Y.; Sun, X.; Liu, Y. Detection of foreign-body in milk powder processing based on terahertz imaging and spectrum. J. Infrared Millim. Terahertz Waves 2021, 42, 878–892. [Google Scholar] [CrossRef]
- Bin, L.; Zhao-yang, H.; Hui-zhou, C.; Ai-guo, O.Y. Identification of different parts of Panax notoginseng based on terahertz spectroscopy. J. Anal. Sci. Technol. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Chen, J.; Hong, R. Fault recognition of large-size low-speed slewing bearing based on improved deep belief network. J. Vib. Control 2022, OnlineFirst. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Li, Y.; Du, Q.; Xi, B.; Hu, J. Classification of hyperspectral imagery using a new fully convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 292–296. [Google Scholar] [CrossRef]
- Dey, N.; Zhang, Y.D.; Rajinikanth, V.; Pugalenthi, R.; Raja, N.S.M. Customized VGG19 architecture for pneumonia detection in chest X-rays. Pattern. Recogn. Lett. 2021, 143, 67–74. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, T.; He, P.; Chen, Q. Quantitative analysis of fatty acid value during rice storage based on olfactory visualization sensor technology. Sens. Actuators B Chem. 2020, 309, 127816. [Google Scholar] [CrossRef]
- Wang, T.; She, N.; Wang, M.; Zhang, B.; Qin, J.; Dong, J.; Wang, S. Changes in Physicochemical Properties and Qualities of Red Brown Rice at Different Storage Temperatures. Foods 2021, 10, 2658. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, H.; Hao, S.; Qiu, K.; Gao, H.; Gao, L.; Zheng, Z. Insights into the water status in hydrous minerals using terahertz time-domain spectroscopy. Sci. Rep. 2019, 9, 9265. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Liu, Y.; Yuan, X.; Chen, Q. Research of image recognition method based on enhanced inception-ResNet-V2. Multimed. Tools. Appl. 2022, 81, 34345–34365. [Google Scholar] [CrossRef]
- Sarkar, A.; Karki, V.; Aggarwal, S.K.; Maurya, G.S.; Kumar, R.; Rai, A.K.; Russo, R.E. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy. Spectrochim. Acta B 2015, 108, 8–14. [Google Scholar] [CrossRef]
- Mateen, M.; Wen, J.; Song, S.; Huang, Z. Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 2018, 11, 1. [Google Scholar] [CrossRef]
- Mascarenhas, S.; Agarwal, M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; pp. 96–99. [Google Scholar]
- Thomas, A.; Harikrishnan, P.M.; Palanisamy, P.; Gopi, V.P. Moving vehicle candidate recognition and classification using inception-resnet-v2. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 467–472. [Google Scholar]
- Liu, D.; Wu, Y.; He, Y.; Qin, L.; Zheng, B. Multi-Object Detection of Chinese License Plate in Complex Scenes. Comput. Syst. Sci. Eng. 2021, 36, 145–156. [Google Scholar] [CrossRef]
- Siciarz, P.; McCurdy, B. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans. Phys. Med. Biol. 2022, 67, 115007. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, D.; Guo, X.; Yang, L. Urban traffic road surface condition recognition algorithm basedon improved Inception-ResNet-v2. Sci. Technol. Eng. 2022, 22, 2524–2530. [Google Scholar]
- Ibrahim, D.M.; Elshennawy, N.M.; Sarhan, A.M. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput. Biol. Med. 2021, 132, 104348. [Google Scholar] [CrossRef] [PubMed]
Network Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Testing-Time (s) |
---|---|---|---|---|---|
1D-VGG19 | 97.59 | 97.70 | 97.13 | 97.39 | 113 |
1D-Inception-ResNet-V2 | 98.39 | 98.20 | 98.37 | 98.28 | 466 |
1D-VGG19-Inception-ResNet-A | 99.80 | 99.83 | 99.74 | 99.78 | 204 |
LiteVGGNet [27] | 91.57 | 90.82 | 91.40 | 91.05 | 115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, Y.; Ge, H.; Jiang, Y.; Qin, Y. Identification of Rice Freshness Using Terahertz Imaging and Deep Learning. Photonics 2023, 10, 547. https://doi.org/10.3390/photonics10050547
Wang Q, Zhang Y, Ge H, Jiang Y, Qin Y. Identification of Rice Freshness Using Terahertz Imaging and Deep Learning. Photonics. 2023; 10(5):547. https://doi.org/10.3390/photonics10050547
Chicago/Turabian StyleWang, Qian, Yuan Zhang, Hongyi Ge, Yuying Jiang, and Yifei Qin. 2023. "Identification of Rice Freshness Using Terahertz Imaging and Deep Learning" Photonics 10, no. 5: 547. https://doi.org/10.3390/photonics10050547
APA StyleWang, Q., Zhang, Y., Ge, H., Jiang, Y., & Qin, Y. (2023). Identification of Rice Freshness Using Terahertz Imaging and Deep Learning. Photonics, 10(5), 547. https://doi.org/10.3390/photonics10050547