Polar-Coded Transmission over 7.8-km Terrestrial Free-Space Optical Links
Abstract
:1. Introduction
- -
- Long-distance transmission of polar and LDPC codes over a 7.8-km terrestrial FSO link, demonstrating that the characteristics, especially block error performance, of polar codes are better than those of the regular LDPC codes;
- -
- Investigating factors that cause differences in the characteristics of polar and LDPC codes in FSO communications;
- -
- Comparing the performance of LDPC codes used in the recent standardization of the fifth-generation mobile communications system (5G) numerically, and clarifying the effectiveness of polar code transmission.
2. CA-SCLD Polar-Coded FSO Transmission System
3. Experimental Setup
3.1. Tokyo FSO Testbed
3.2. Error-Correcting Codes
3.3. Data Frame Format
4. Experimental Results
4.1. Lena Image
4.2. Error-correcting Performance
4.3. Effect of Interleaving
4.4. Comparison with Numerical Results
5. Discussion on Experimental Results
5.1. Different BER and BLER Tendency of Polar and LDPC Codes
5.2. Comparison with 5G LDPC Codes
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Toyoshima, M. Recent trends in space laser communications for small satellites and constellations. J. Light. Technol. 2021, 39, 693–699. [Google Scholar] [CrossRef]
- Reed, I.S.; Solomon, G. Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [Google Scholar] [CrossRef]
- Gallager, R.G. Low-density parity-check codes. IEEE Trans. Inf. Theory 1962, 8, 21–28. [Google Scholar] [CrossRef]
- Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. In Proceedings of the ICC’93-IEEE International Conference on Communication, Geneva, Switzerland, 23–26 May 1993; Volume 2, pp. 1064–1070. [Google Scholar]
- Lee, H. A high-speed low-complexity Reed-Solomon decoder for optical communications. IEEE Trans. Circuits Syst. II Express Briefs 2005, 52, 461–465. [Google Scholar]
- Djordjevic, I.B. Adaptive Modulation and Coding for Free-Space Optical Channels. J. Opt. Commun. Netw. 2010, 2, 221–229. [Google Scholar] [CrossRef]
- Calzolari, G.P.; Chiaraluce, F.; Garello, R.; Vassallo, E. Turbo code applications on telemetry and deep space communications. In Turbo Code Applications: A Journey from a Paper to Realization; Sripimanwat, K., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 321–344. [Google Scholar]
- CCSDS. TM Synchronization and Channel Coding-Summary of Concept and Rationale; Consultative Committee for Space Data Sys-tems (CCSDS), Informational Report, 130.1-G-3; CCSDS: Washington, DC, USA, 2020. [Google Scholar]
- Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Niu, K.; Chen, K. CRC-Aided Decoding of Polar Codes. IEEE Commun. Lett. 2012, 16, 1668–1671. [Google Scholar] [CrossRef]
- Hu, W.; Luo, Z.; Han, D.; Chen, Q.; Ai, L.; Li, Q.; Zhang, M. A scheme of ultraviolet communication system with polar channel coding. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017. [Google Scholar]
- Zhang, J.; Hu, W.; Li, X.; Zhang, M.; Han, D.; Ghassemlooy, Z. Polar coding performance for indoor LOS VLC system. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Qingdao, China, 22–24 October 2017. [Google Scholar]
- Ito, K.; Okamoto, E.; Takenaka, H.; Kunimori, H.; Toyoshima, M. An adaptive coded transmission scheme utilizing frozen bits of polar code in satellite laser communications. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; pp. 1–7. [Google Scholar]
- Fang, J.; Bi, M.; Xiao, S.; Yang, G.; Li, C.; Liu, L.; Zhang, Y.; Huang, T.; Hu, W. Performance investigation of the polar coded FSO communication system over turbulence channel. Appl. Opt. 2018, 57, 7378–7384. [Google Scholar] [CrossRef]
- Fujita, S.; Toyoshima, M.; Shimizu, R.; Ito, K.; Okamoto, E.; Takenaka, H.; Kunimori, H.; Endo, H.; Fujiwara, M.; Kitamura, M.; et al. Experimental evaluation of polar code transmission in terrestrial free space optics. In Proceedings of the 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Portland, OR, USA, 14–16 October 2019. [Google Scholar] [CrossRef]
- Fujia, S.; Okamoto, E.; Takenaka, H.; Kunimori, H.; Endo, H.; Fujiwara, M.; Shimizu, R.; Sasaki, M.; Toyoshima, M. Performance analysis of polar-code transmission experiments over 7.8-km terrestrial free-space optical link using channel equalization. In Proceedings of the International Conference on Space Optics (ICSO2020), Virtual Conference, 30 March–2 April 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Balatsoukas-Stimming, A.; Parizi, M.B.; Burg, A. LLR-based successive cancellation list decoding of polar codes. IEEE Trans. Signal Process. 2015, 63, 5165–5179. [Google Scholar] [CrossRef]
- Endo, H.; Fujiwara, M.; Kitamura, M.; Ito, T.; Toyoshima, M.; Takayama, Y.; Takenaka, H.; Shimizu, R.; Laurenti, N.; Vallone, G.; et al. Free-space optical channel estimation for physical layer security. Opt. Express 2016, 24, 8940–8955. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Ito, T.; Kitamura, M.; Endo, H.; Tsuzuki, O.; Toyoshima, M.; Takenaka, H.; Takayama, Y.; Shimizu, R.; Takeoka, M.; et al. Free-space optical wiretap channel and experimental secret key agreement in 78 km terrestrial link. Opt. Express 2018, 26, 19513–19523. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Fujiwara, M.; Kitamura, M.; Tsuzuki, O.; Ito, T.; Shimizu, R.; Takeoka, M.; Sasaki, M. Free space optical secret key agreement. Opt. Express 2018, 26, 23305–23332. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Fujiwara, M.; Kitamura, M.; Tsuzuki, O.; Shimizu, R.; Takeoka, M.; Sasaki, M. Group key agreement over free-space optical links. OSA Contin. 2020, 3, 2525–2543. [Google Scholar] [CrossRef]
- Geiselhart, M.; Elkelesh, A.; Ebada, M.; Cammerer, S.; Brink, S.T. CRC-Aided Belief Propagation List Decoding of Polar Codes. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; pp. 395–400. [Google Scholar] [CrossRef]
- Zhang, Z.; Dolecek, L.; Nikolic, B.; Anantharam, V.; Wainwright, M.J. Design of LDPC decoders for improved low error rate performance: Quantization and algorithm choices. IEEE Trans. Commun. 2009, 57, 3258–3268. [Google Scholar] [CrossRef]
- Vangala, H.; Viterbo, E.; Hong, Y. A Comparative Study of Polar Code Constructions for the AWGN Channel. arXiv 2015, arXiv:1501.02473. [Google Scholar]
- Sybis, M.; Wesolowski, K.; Jayasinghe, K.; Venkatasubramanian, V.; Vukadinovic, V. Channel Coding for Ultra-Reliable Low-Latency Communication in 5G Systems. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Song, H.; Fu, J.-C.; Zeng, S.-J.; Sha, J.; Zhang, Z.; You, X.; Zhang, C. Polar-coded forward error correction for MLC NAND flash memory. Sci. China Inf. Sci. 2018, 61, 102307. [Google Scholar] [CrossRef]
- IEEE 802.22-07/0313r0; LDPC Decoding for 802.22 Standard. IEEE: New York, NY, USA, 15–20 July 2007.
- Robertson, P.; Villebrun, E.; Hoeher, P. A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In Proceedings of the IEEE International Conference on Communications ICC ‘95, Seattle, WA, USA, 18–22 June 1995; pp. 1009–1013. [Google Scholar]
- CCSDS 231.0-B-4; TC Synchronization and Channel Coding. CCSDS Secretariat National Aeronautics and Space Administration: Washington, DC, USA, 2021.
- CCSDS 131.0-B-4; TM Synchronization and Channel Coding. CCSDS Secretariat National Aeronautics and Space Administration: Washington, DC, USA, 2022.
- Bykhovsky, D. Simple Generation of Gamma, Gamma-Gamma and K Distributions with Exponential Autocorrelation Function. IEEE J. Light. Technol. 2016, 34, 2106–2110. [Google Scholar] [CrossRef]
- Tajima, S.; Takahashi, T.; Ibi, S.; Sampei, S. Iterative Decoding Based on Concatenated Belief Propagation for CRC-Aided Polar Codes. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 1411–1415. [Google Scholar]
- Hagenauer, J.; Offer, E.; Papke, L. Iterative decoding of binary block and convolutional codes. IEEE Trans. Inf. Theory 1996, 42, 429–445. [Google Scholar] [CrossRef]
- GPP TS 38.212; NR; Multiplexing and Channel Coding. V15.13.0. ETSI: Sophia Antipolis, France, 2021.
- Hui, D.; Sandberg, S.; Blankenship, Y.; Andersson, M.; Grosjean, L. Channel Coding in 5G New Radio: A Tutorial Overview and Performance Comparison with 4G LTE. IEEE Veh. Technol. Mag. 2018, 13, 60–69. [Google Scholar] [CrossRef]
- Sharma, A.; Salim, M. Polar Code Appropriateness for Ultra-Reliable and Low-Latency Use Cases of 5G Systems. Int. J. Netw. Distrib. Comput. 2019, 7, 93–99. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Tan, T.N.; Lee, H. Low-Complexity High-Throughput QC-LDPC Decoder for 5G New Radio Wireless Communication. Electronics 2021, 10, 516. [Google Scholar] [CrossRef]
- Sahin, O. A Study on Comparison of Polar and LDPC Codes above 100Gb/s Throughput Regime; IEEE 802.15 Standing Committee Terahertz; July 2019; InterDigital Europe: London, UK, 2019. [Google Scholar]
- Álvarez, Á.; Fernández, V.; Matuz, B. An Efficient NB-LDPC Decoder Architecture for Space Telecommand Links. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1213–1217. [Google Scholar] [CrossRef]
CA-SCLD Polar | SCLD Polar | Regular LDPC | |
---|---|---|---|
Code length | 2048 | ||
Code rate | 0.5 | ||
CRC length | 24 | - | - |
List size | 32 | - | |
Column and row weights | - | - | (6,3) |
Decoding iterations | - | - | 50 |
CA-SCLD Polar | SCLD Polar | Regular LDPC | |
---|---|---|---|
Theoretical value [a.u.] | 589,056 | 573,440 | 793,600 |
Normalized by CA-SCLD polar | 1 | 0.973 | 1.35 |
Execution time [ms] | 6064 | 5985 | 13,687 |
Error-Correcting Code | Computational Cost for Decoding |
---|---|
CA-SCLD polar code [26,27] | |
SCLD polar code [26,27] | |
Regular LDPC code [28,29] |
5G NR LDPC | Regular LDPC | ||
---|---|---|---|
Code length | 2048 | ||
Code rate | 0.5 | ||
Column and row weights | Variable, base-graph 2 | (6,3) | |
Decoding algorithm | Offset min-sum | Sum-product | Sum-product |
Decoding iterations | 20 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujita, S.; Okamoto, E.; Takenaka, H.; Endo, H.; Fujiwara, M.; Kitamura, M.; Shimizu, R.; Sasaki, M.; Toyoshima, M. Polar-Coded Transmission over 7.8-km Terrestrial Free-Space Optical Links. Photonics 2023, 10, 462. https://doi.org/10.3390/photonics10040462
Fujita S, Okamoto E, Takenaka H, Endo H, Fujiwara M, Kitamura M, Shimizu R, Sasaki M, Toyoshima M. Polar-Coded Transmission over 7.8-km Terrestrial Free-Space Optical Links. Photonics. 2023; 10(4):462. https://doi.org/10.3390/photonics10040462
Chicago/Turabian StyleFujita, Shingo, Eiji Okamoto, Hideki Takenaka, Hiroyuki Endo, Mikio Fujiwara, Mitsuo Kitamura, Ryosuke Shimizu, Masahide Sasaki, and Morio Toyoshima. 2023. "Polar-Coded Transmission over 7.8-km Terrestrial Free-Space Optical Links" Photonics 10, no. 4: 462. https://doi.org/10.3390/photonics10040462