Transmission Enhancement through Sub-Wavelength Aperture Based on Regulable Water-Based Metamaterial
Abstract
:1. Introduction
2. Design of Water-Based MTM for ET
3. The MTM Configuration Adjustment and Reconfiguration
3.1. The Water Level Adjustment
3.2. The Symmetry of the Water-Based MTM Particle
3.3. Flexible Deformation of Water-Based MTM Particle
4. Discussion
4.1. The Influence of the Distance between the Particle and the Film
4.2. The Influence of the Size Parameters of the Particle
4.3. Future Improvement for the Limitations and the Potential Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huidobro, P.A.; Silveirinha, M.G.; Galiffi, E.; Pendry, J.B. Homogenization theory of space-time metamaterials. Phys. Rev. Appl. 2021, 16, 14044. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, G.; Zhou, M.; Zheng, J.; Tang, S.; Ji, G. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture. Sci. Technol. 2022, 108, 90–101. [Google Scholar] [CrossRef]
- Ye, K.P.; Pei, W.J.; Sa, Z.H.; Chen, H.; Wu, R.X. Invisible gateway by superscattering effect of metamaterials. Phys. Rev. Lett. 2021, 126, 227403. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Pena, V.; Beruete, M.; Rodriguez-Ulibarri, P.; Engheta, N. On the performance of an ENZ-based sensor using transmission line theory and effective medium approach. New J. Phys. 2019, 21, 43056. [Google Scholar] [CrossRef]
- Xin, L.; Qiufan, C.; Shiliang, G.; Zhiquan, L. Research of gate-tunable phase modulation metasurfaces based on epsilon-near-zero property of Indium-Tin-Oxide. Photonics 2022, 9, 323. [Google Scholar]
- Sun, K.; Fan, R.; Zhang, X.; Zhang, Z.; Shi, Z.; Wang, N.; Xie, P.; Wang, Z.; Fan, G.; Liu, H.; et al. An overview of metamaterials and their achievements in wireless power transfer. J. Mater. Chem. C 2018, 6, 2925–2943. [Google Scholar] [CrossRef]
- Hu, J.; Bandyopadhyay, S.; Liu, Y.H.; Shao, L.Y. A review on metasurface: From principle to smart metadevices. Front. Phys. 2021, 8, 586087. [Google Scholar] [CrossRef]
- Lalegani, Z.; Ebrahimi SA, S.; Hamawandi, B.; Spada, L.L.; Batili, H.; Toprak, M.S. Targeted dielectric coating of silver nanoparticles with silica to manipulate optical properties for metasurface applications. Mater. Chem. Phys. 2022, 287, 126250. [Google Scholar] [CrossRef]
- Estakhri, N.; Edwards, B.; Engheta, N. Inverse-designed metastructures that solve equations. Science 2019, 363, 1333–1338. [Google Scholar] [CrossRef]
- Greybush, N.J.; Pacheco-Pena, V.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. ACS Nano 2019, 13, 1617–1624. [Google Scholar] [CrossRef]
- Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. Multifunct. Mater. 2019, 2, 043001. [Google Scholar] [CrossRef]
- Pengfei, S.; Yu, Q.; Yangyang, C.; Hongge, Z.; Renjing, G.; Shutian, L. Topology optimization of metamaterial microstructure for wireless power transfer with high power transmission efficiency. J. Magn. Magn. Mater. 2021, 537, 168228. [Google Scholar]
- Nemkov, N.A.; Stenishchev, I.V.; Basharin, A.A. Nontrivial nonradiating all-dielectric anapole. Sci. Rep. 2017, 7, 1064. [Google Scholar] [CrossRef]
- Rybin, M.V.; Filonov, D.S.; Samusev, K.B.; Belov, P.A. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 2015, 6, 10102. [Google Scholar] [CrossRef]
- Liu, L.; Katko, A.R.; Li, D.; Cummer, S.A. Broadband electromagnetic metamaterials with reconfigurable fluid channels. Phys. Rev. B 2014, 89, 245132. [Google Scholar] [CrossRef]
- Odit, M.; Kapitanova, P.; Andryieuski, A.; Belov, P.; Lavrinenko, A.V. Experimental demonstration of water based tunable metasurface. Appl. Phys. Lett. 2016, 109, 11901. [Google Scholar] [CrossRef]
- Andryieuski, A.; Kuznetsova, S.M.; Zhukovsky, S.V.; Kivshar, Y.S.; Lavrinenko, A.V. Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep. 2015, 5, 13535. [Google Scholar] [CrossRef]
- Jacobsen, R.E.; Lavrinenko, A.; Arslanagic, S. Water-Based Metasurfaces for Effective Switching of Microwaves. IEEE Antennas Wireless Propag.Lett. 2018, 17, 571–574. [Google Scholar] [CrossRef]
- Ren, J.; Yin, J.Y. Cylindrical-water-resonator-based ultra-broadband microwave absorber. Opt. Mater Express 2018, 8, 2060–2071. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, W.; Rukhlenko, I.D.; Xiao, F.; He, C.; Geng, J.; Liang, X.; Jin, R.; Malin, P. Water metamaterial for ultra-broadband and wide-angle absorption. Opt. Express 2018, 26, 5052–5059. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Z.; Wu, J. Design of ultra-wideband and near-unity absorption water-based metamaterial absorber. Appl. Phys. B 2020, 126, 52. [Google Scholar] [CrossRef]
- Stenishchev, I.V.; Basharin, A.A. Toroidal response in all-dielectric metamaterials based on water. Sci. Rep. 2017, 7, 9468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, R.E.; Lavrinenko, A.V.; Arslanagić, S. A water-based huygens dielectric resonator antenna. IEEE Open J. Antennas Propag. 2020, 1, 493–499. [Google Scholar] [CrossRef]
- Xu, J.; Fu, Q.; Fan, Y.; Nan, J.; Zhang, F. Thermally Reconfigurable Fano Resonance in Water Brick Pair Metamaterial. Results Phys. 2021, 28, 104650. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, S.; Bi, K.; Lei, M.; Zhou, J. Low-power nonlinear enhanced electromagnetic transmission of a subwavelength metallic aperture. Photon. Res. 2018, 6, 1102–1106. [Google Scholar] [CrossRef]
- Ramaccia, D.; Palma, L.D.; Ates, D.; Ozbay, E.; Toscano, A.; Bilotti, F. Analytical model of connected bi-Omega: Robust particle for the selective power transmission through sub-wavelength apertures. IEEE Trans. Antennas Propag. 2014, 62, 2093–2101. [Google Scholar] [CrossRef]
- Takou, E.; Tasolamprou, A.C.; Tsilipakos, O.; Viskadourakis, Z. Anapole tolerance to dissipation losses in thermally tunable water-based metasurfaces. Phys. Rev. Appl. 2021, 15, 14043. [Google Scholar] [CrossRef]
- Vegni, L.; Cicchetti, R.; Capece, P. Spectral dyadic Green’s function formulation for planar integrated structures, IEEE Trans. Antennas Propag. 1988, 36, 1057–1065. [Google Scholar] [CrossRef]
- Donnelly, E.; Spada, L.L. Electromagnetic and thermal nanostructures: From waves to circuits. Eng. Res. Express 2020, 2, 15045. [Google Scholar] [CrossRef]
- Engheta, N.; Salandrino, A.; Alu, A. Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors. Phys. Rev. Lett. 2005, 95, 95504. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, P.; Li, X.; Zhao, H.; Tang, Y.; Zhu, J.; Gao, R.; Liu, S. Transmission Enhancement through Sub-Wavelength Aperture Based on Regulable Water-Based Metamaterial. Photonics 2023, 10, 181. https://doi.org/10.3390/photonics10020181
Shi P, Li X, Zhao H, Tang Y, Zhu J, Gao R, Liu S. Transmission Enhancement through Sub-Wavelength Aperture Based on Regulable Water-Based Metamaterial. Photonics. 2023; 10(2):181. https://doi.org/10.3390/photonics10020181
Chicago/Turabian StyleShi, Pengfei, Xiaodong Li, Hongge Zhao, Youfu Tang, Jingwei Zhu, Renjing Gao, and Shutian Liu. 2023. "Transmission Enhancement through Sub-Wavelength Aperture Based on Regulable Water-Based Metamaterial" Photonics 10, no. 2: 181. https://doi.org/10.3390/photonics10020181
APA StyleShi, P., Li, X., Zhao, H., Tang, Y., Zhu, J., Gao, R., & Liu, S. (2023). Transmission Enhancement through Sub-Wavelength Aperture Based on Regulable Water-Based Metamaterial. Photonics, 10(2), 181. https://doi.org/10.3390/photonics10020181