1.1–1.6 μm Multi-Wavelength Random Raman Fiber Laser
Abstract
1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamu, A.I.; Wang, Y.; Habib, M.S.; Dasa, M.K.; Antonio-Lopez, J.E.; Amezcua-Correa, R.; Bang, O.; Markos, C. Multi-wavelength high-energy gas-filled fiber Raman laser spanning from 1.53 μm to 2.4 μm. Opt. Lett. 2021, 46, 452–455. [Google Scholar] [CrossRef]
- Sugavanam, S.; Yan, Z.; Kamynin, V.; Kurkov, A.S.; Zhang, L.; Churkin, D.V. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter. Opt. Express 2014, 22, 2839–2844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.N.; Wu, H.; Fan, M.Q.; Li, Y.; Gong, Y.; Rao, Y.J. Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering. Opt. Express 2013, 21, 29358–29363. [Google Scholar] [CrossRef] [PubMed]
- Du, X.Y.; Zhang, H.W.; Wang, X.; Wang, X.L.; Zhou, P.; Liu, Z.J. Multiwavelength Raman fiber laser based on polarization maintaining fiber loop mirror and random distributed feedback. Laser Phys. Lett. 2015, 12, 45106. [Google Scholar] [CrossRef]
- Fernandez-Vallejo, M.; Díaz, S.; Perez-Herrera, R.A.; Passaro, D.; Selleri, S.; Quintela, M.A.; López Higuera, J.M.; Lopez-Amo, M. Resilient long-distance sensor system using a multiwavelength Raman laser. Meas. Sci. Technol. 2010, 21, 94017. [Google Scholar] [CrossRef]
- Han, Y.G.; Tran, T.V.; Kim, S.H.; Lee, S.B. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature. Opt. Lett. 2005, 30, 1282–1284. [Google Scholar] [CrossRef]
- Luo, Z.Q.; Cai, Z.P.; Huang, J.F.; Ye, C.C.; Huang, C.H.; Xu, H.Y.; Zhong, W.D. Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity. Opt. Lett. 2008, 33, 1602–1604. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.L.; Lou, C.Y.; Gao, Y.Z. Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter. Opt. Express 2006, 14, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, X.L.; Yu, Y.; Huang, X. 82-channel multi-wavelength comb generation in a SOA fiber ring laser. Opt. Laser Technol. 2010, 42, 285–288. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Yao, Y.; Yi, M.; Guo, B.; Tian, J.J. Multiwavelength fiber laser employing a nonlinear Brillouin optical loop mirror: Experimental and numerical studies. Opt. Express 2014, 22, 15352–15363. [Google Scholar] [CrossRef]
- Shirazi, M.R.; Mohamed Taib, J.; Dimyati, K.; Harun, S.W.; Ahmad, H. Multi-wavelength Brillouin–Raman fiber laser generation assisted by multiple four-wave mixing processes in a ring cavity. Laser Phys. 2013, 23, 75108. [Google Scholar] [CrossRef]
- Ahmad, H.; Parvizi, R.; Dimyati, K.; Tamjis, M.R.; Harun, S.W. FWM-based multi-wavelength erbium-doped fiber laser using Bi-EDF. Laser Phys. 2010, 20, 1414–1417. [Google Scholar] [CrossRef]
- Zhang, L.N.; Yan, F.P.; Feng, T.; Guo, Y.; Qin, Q.; Zhou, H.; Suo, Y.P. Switchable Multi-Wavelength Thulium-Doped Fiber Laser Employing a Polarization-Maintaining Sampled Fiber Bragg Grating. IEEE Access 2019, 7, 155437–155445. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chow, C.W.; Wu, Y.F.; Shih, F.Y.; Wang, C.H.; Chi, S. Multiwavelength erbium-doped fiber ring laser employing Fabry–Perot etalon inside cavity operating in room temperature. Opt. Fiber Technol. 2009, 15, 344–347. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Y.J.; Yu, L.; Song, Z.P.; Liang, D.Z.; Ruan, S.C. Multiwavelength Thulium-Doped Fiber Laser Using a Micro Fiber-Optic Fabry–Perot Interferometer. IEEE Photon. J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Sierra-Hernandez, J.M.; Rojas-Laguna, R.; Vargas-Rodriguez, E.; Estudillo-Ayala, J.M.; Mata-Chavez, R.I.; Jauregui-Vazquez, D.; Hernandez-Garcia, J.C.; Andrade-Lucio, J.A.; Gutierrez-Gutierrez, J.C. A tunable multi-wavelength laser based on a Mach–Zehnder interferometer with photonic crystal fiber. Laser Phys. 2013, 23, 55105. [Google Scholar] [CrossRef]
- Liu, S.; Yan, F.P.; Wu, B.L.; Tan, S.Y.; Peng, W.J.; Feng, T.; Liang, X.; Li, Q. A multiwavelength thulium-doped silica fiber laser incorporating a highly nonlinear fiber. J. Opt. 2014, 16, 55201. [Google Scholar] [CrossRef]
- Liu, D.; Ngo, N.Q.; Liu, H.; Liu, D. Stable multiwavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier. Opt. Commun. 2009, 282, 1598–1601. [Google Scholar] [CrossRef]
- Pleros, N.; Bintjas, C.; Kalyvas, M.; Theophilopoulos, G.; Yiannopoulos, K.; Sygletos, S.; Avramopoulos, H. Multiwavelength and power equalized SOA laser sources. IEEE Photon. Technol. Lett. 2002, 14, 693–695. [Google Scholar] [CrossRef]
- Liang, D.M.; Xu, X.F.; Li, Y.; Pei, J.H.; Jiang, Y.; Kang, Z.H.; Gao, J.Y. Multiwavelength fiber laser based on a high-birefringence fiber loop mirror. Laser Phys. Lett. 2007, 4, 57–60. [Google Scholar] [CrossRef]
- Frazão, O.; Correia, C.; Santos, J.L.; Baptista, J.M. Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement. Meas. Sci. Technol. 2009, 20, 45203. [Google Scholar] [CrossRef]
- Kim, C.S.; Sova, R.M.; Kang, J.U. Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter. Opt. Commun. 2003, 218, 291–295. [Google Scholar] [CrossRef]
- Turitsyn, S.K.; Babin, S.A.; El-Taher, A.E.; Harper, P.; Churkin, D.V.; Kablukov, S.I.; Ania-Castañón, J.D.; Karalekas, V.; Podivilov, E.V. Random distributed feedback fibre laser. Nat. Photonics 2010, 4, 231–235. [Google Scholar] [CrossRef]
- Balaswamy, V.; Arun, S.; Aparanji, S.; Choudhury, V.; Supradeepa, V.R. High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers. Opt. Lett. 2018, 43, 1574–1577. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, L.; Feng, Y. Silica-based fiber Raman laser at >2.4 μm. Opt. Lett. 2015, 40, 3249–3252. [Google Scholar] [CrossRef]
- Liu, J.; Tan, F.; Shi, H.; Wang, P. High-power operation of silica-based Raman fiber amplifier at 2147 nm. Opt. Express 2014, 22, 28383–28389. [Google Scholar] [CrossRef]
- Jin, X.; Lou, Z.; Zhang, H.; Xu, J.; Zhou, P.; Liu, Z. Random distributed feedback fiber laser at 2.1 μm. Opt. Lett. 2016, 41, 4923–4926. [Google Scholar] [CrossRef]
- El-Taher, A.E.; Harper, P.; Babin, S.A.; Churkin, D.V.; Podivilov, E.V.; Ania-Castanon, J.D.; Turitsyn, S.K. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation. Opt. Lett. 2011, 36, 130–132. [Google Scholar] [CrossRef]
- Pinto, A.M.R.; Frazão, O.; Santos, J.L.; Lopez-Amo, M. Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering. Appl. Phys. B 2010, 99, 391–395. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Sun, P. 1.1–1.6 μm Multi-Wavelength Random Raman Fiber Laser. Photonics 2023, 10, 164. https://doi.org/10.3390/photonics10020164
Hu C, Sun P. 1.1–1.6 μm Multi-Wavelength Random Raman Fiber Laser. Photonics. 2023; 10(2):164. https://doi.org/10.3390/photonics10020164
Chicago/Turabian StyleHu, Chunhua, and Ping Sun. 2023. "1.1–1.6 μm Multi-Wavelength Random Raman Fiber Laser" Photonics 10, no. 2: 164. https://doi.org/10.3390/photonics10020164
APA StyleHu, C., & Sun, P. (2023). 1.1–1.6 μm Multi-Wavelength Random Raman Fiber Laser. Photonics, 10(2), 164. https://doi.org/10.3390/photonics10020164