Achromatic Flat Metasurface Fiber Couplers within Telecom Bands
Abstract
1. Introduction
2. Materials and Methods
2.1. The Structure of This Designed Metasurface Fiber Coupler
2.2. The Design Process of the Metalens
3. Results and Discussions
3.1. The Design of Single-Band Fiber Coupler
3.2. The Design of Broad-Band Fiber Coupler
3.3. The Optical Performance of Achromatic Lens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senior, J.M.; Jamro, M.Y. Optical Fiber Communications: Principles and Practice; Financial Times/Prentice Hall: Harlow, UK, 2009; pp. xviii+558. [Google Scholar]
- Gai, L.; Li, J.; Zhao, Y. Preparation and application of microfiber resonant ring sensors: A review. Opt. Laser Technol. 2017, 89, 126–136. [Google Scholar] [CrossRef]
- Marin-Palomo, P.; Kemal, J.N.; Karpov, M.; Kordts, A.; Pfeifle, J.; Pfeiffer, M.H.P.; Trocha, P.; Wolf, S.; Brasch, V.; Anderson, M.H.; et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 2017, 546, 274–279. [Google Scholar] [CrossRef]
- Essiambre, R.-J.; Tkach, R.W. Capacity Trends and Limits of Optical Communication Networks. Proc. IEEE 2012, 100, 1035–1055. [Google Scholar] [CrossRef]
- Richardson, D.J.; Fini, J.M.; Nelson, L.E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362. [Google Scholar] [CrossRef]
- Chong, A.; Buckley, J.; Renninger, W.; Wise, F. All-normal-dispersion femtosecond fiber laser. Opt. Express 2006, 14, 10095–10100. [Google Scholar] [CrossRef]
- Park, B.H.; Pierce, M.C.; Cense, B.; Yun, S.-H.; Mujat, M.; Tearney, G.J.; Bouma, B.E.; de Boer, J. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 13 µm. Opt. Express 2005, 13, 3931–3944. [Google Scholar] [CrossRef]
- Pahlevaninezhad, H.; Khorasaninejad, M.; Huang, Y.-W.; Shi, Z.; Hariri, L.P.; Adams, D.C.; Ding, V.; Zhu, A.; Qiu, C.-W.; Capasso, F.; et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 2018, 12, 540–547. [Google Scholar] [CrossRef]
- Shin, J.; Tran, D.N.; Stroud, J.R.; Chin, S.; Tran, T.D.; Foster, M.A. A minimally invasive lens-free computational microendoscope. Sci. Adv. 2019, 5, eaaw5595. [Google Scholar] [CrossRef]
- Shahmoon, A.; Aharon, S.; Kruchik, O.; Hohmann, M.; Slovin, H.; Douplik, A.; Zalevsky, Z. In vivo minimally invasive interstitial multi-functional microendoscopy. Sci. Rep. 2013, 3, 1805. [Google Scholar] [CrossRef]
- Passaro, V.M.N.; Cuccovillo, A.; Vaiani, L.; De Carlo, M.; Campanella, C.E. Gyroscope Technology and Applications: A Review in the Industrial Perspective. Sensors 2017, 17, 2284. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.L.; Eckstein, D.; McKinley, B.; Boswell, L.F.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor for the monitoring of moisture ingress and porosity of concrete. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Brugge, Belgium, 23–27 May 2005; pp. 491–494. [Google Scholar]
- Ansari, F. Structural health monitoring with fiber optic sensors. Front. Mech. Eng. China 2009, 4, 103–110. [Google Scholar] [CrossRef]
- Bednarska, K.; Sobotka, P.; Woliński, T.R.; Zakręcka, O.; Pomianek, W.; Nocoń, A.; Lesiak, P. Hybrid Fiber Optic Sensor Systems in Structural Health Monitoring in Aircraft Structures. Materials 2020, 13, 2249. [Google Scholar] [CrossRef]
- Constable, A.; Kim, J.; Mervis, J.; Zarinetchi, F.; Prentiss, M. Demonstration of a fiber-optical light-force trap. Opt. Lett. 1993, 18, 1867–1869. [Google Scholar] [CrossRef]
- Asadollahbaik, A.; Thiele, S.; Weber, K.; Kumar, A.; Drozella, J.; Sterl, F.; Herkommer, A.M.; Giessen, H.; Fick, J. Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses. Acs Photonics 2019, 7, 88–97. [Google Scholar] [CrossRef]
- Sollapur, R.; Kartashov, D.; Zürch, M.; Hoffmann, A.; Grigorova, T.; Sauer, G.; Hartung, A.; Schwuchow, A.; Bierlich, J.; Kobelke, J.; et al. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light. Sci. Appl. 2017, 6, e17124. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Li, S.; An, G.-W.; Cheng, T. Magnetic Field Sensing Based on SPR Optical Fiber Sensor Interacting With Magnetic Fluid. IEEE Trans. Instrum. Meas. 2018, 68, 234–239. [Google Scholar] [CrossRef]
- Ghasemi, S.; Hantehzadeh, M.; Sabbaghzadeh, J.; Dorranian, D.; Vatani, V.; Babazadeh, A.; Hejaz, K.; Hemmati, A.; Lafouti, M. Designing a plano-convex aspheric lens for fiber optics collimator. Opt. Lasers Eng. 2012, 50, 293–296. [Google Scholar] [CrossRef]
- Chandrappan, J.; Jing, Z.; Mohan, R.V.; Gomez, P.O.; Aung, T.A.; Yongfei, X.; Ramana, P.V.; Lau, J.H.; Kwong, D.L. Optical Coupling Methods for Cost-Effective Polymer Optical Fiber Communication. IEEE Trans. Compon. Packag. Technol. 2009, 32, 593–599. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Wang, Z.; Hou, J. Monolithic fiber end cap collimator for high-power free-space fiber–fiber coupling. Appl. Opt. 2016, 55, 4001–4004. [Google Scholar] [CrossRef] [PubMed]
- Laskin, A.; Shealy, D. Building achromatic refractive beam shapers. In Proceedings of the Conference on Laser Beam Shaping XV, San Diego, CA, USA, 17–19 August 2014; pp. 115–125. [Google Scholar]
- Li, L.; Yi, A.Y. An affordable injection-molded precision hybrid glass–polymer achromatic lens. Int. J. Adv. Manuf. Technol. 2013, 69, 1461–1467. [Google Scholar] [CrossRef]
- Plidschun, M.; Ren, H.; Kim, J.; Förster, R.; Maier, S.A.; Schmidt, M.A. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light. Sci. Appl. 2021, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xiong, Y.; Xu, F.; Chen, Z. Metasurface around the Side Surface of an Optical Fiber for Light Focusing. Opt. Express 2022, 30, 40916–40924. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shi, Y. Metamaterial-Based Maxwell’s Fisheye Lens for Multimode Waveguide Crossing. Laser Photonics Rev. 2018, 12, 1800094. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Wang, H.; Sun, L.; Su, Y. Ultra-Broadband Mode Size Converter Using On-Chip Metamaterial-Based Luneburg Lens. ACS Photonics 2020, 8, 202–208. [Google Scholar] [CrossRef]
- Ren, H.; Jang, J.; Li, C.; Aigner, A.; Plidschun, M.; Kim, J.; Rho, J.; Schmidt, M.A.; Maier, S.A. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 2022, 13, 4183. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Kácik, D.; Tatar, P.; Martinček, I. Measurement of PDMS refractive index by low-coherence interferometry. In Proceedings of the 2014 ELEKTRO, Rajecke Teplice, Slovakia, 19–20 May 2014; pp. 662–665. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, R.; Xue, X.; Jiang, X.; Chen, X.; Chui, H.-C. Achromatic Flat Metasurface Fiber Couplers within Telecom Bands. Photonics 2023, 10, 28. https://doi.org/10.3390/photonics10010028
Li J, Li R, Xue X, Jiang X, Chen X, Chui H-C. Achromatic Flat Metasurface Fiber Couplers within Telecom Bands. Photonics. 2023; 10(1):28. https://doi.org/10.3390/photonics10010028
Chicago/Turabian StyleLi, Jiayi, Rui Li, Xiaojun Xue, Xiao Jiang, Xiaoming Chen, and Hsiang-Chen Chui. 2023. "Achromatic Flat Metasurface Fiber Couplers within Telecom Bands" Photonics 10, no. 1: 28. https://doi.org/10.3390/photonics10010028
APA StyleLi, J., Li, R., Xue, X., Jiang, X., Chen, X., & Chui, H.-C. (2023). Achromatic Flat Metasurface Fiber Couplers within Telecom Bands. Photonics, 10(1), 28. https://doi.org/10.3390/photonics10010028