Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency
Abstract
:1. Introduction
2. Wireless Signals Transport Strategies for Fiber-Wireless Link
3. Transmission Experiment Comparing Analog and Digitized RF-over-Fiber Transport
3.1. Experimental Demonstration
3.2. Experimental Results and Discussions
4. Energy Consumption of Different Transport Schemes
4.1. Single Base Station Energy Consumption for Different Transport Schemes
Parameter | Estimated Value | Parameter | Estimated Value | |
---|---|---|---|---|
Power consumption of baseband unit (PBBU) | 58 W | PA efficiency (μPA) | BBoF, DIFoF, DRFoF | 25% |
IFoF, RFoF | 15% | |||
Power consumption of DUC/DDC (PDUC/DDC) | 3 W | Transmitting power (PTX) | 40 W | |
Power consumption of ADC/DAC (PADC/DAC) | 2 W | Feeder loss (Lfeeder) | BBoF | 0.5 |
IFoF, RFoF, DIFoF, DRFoF | 1 | |||
Power consumption of digital pre-distortion (PDPD) | 5 W | Power supply loss (LPS) | 0.15 | |
Power consumption of RF unit (PRFU) | 2 W | Cooling efficiency (μC) | 0.2 | |
Power consumption of clock management (PC) | 1 W | Number of sectors (Nsector) | 3 |
4.2. Energy Consumption per Unit Coverage
4.2.1. Rural Area
4.2.2. Urban Area
5. Conclusions
Acknowledgements
Authors Contributions
Conflicts of Interest
References
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Nirmalathas, A.; Lim, C.; Novak, D.; Waterhouse, R.B. Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks. In Millimeter Waves in Communication Systems, 1st ed.; Michel, N., Ed.; Hermes Penton Science Ltd.: London, UK, 2002; pp. 43–67. [Google Scholar]
- Lim, C.; Nirmalathas, A.; Bakaul, M.; Gamage, P.; Lee, K.L.; Yang, Y.; Novak, D.; Waterhouse, R. Fiber-wireless networks and subsystem technologies. IEEE J. Lightw. Technol. 2010, 28, 390–405. [Google Scholar] [CrossRef]
- Kurniawan, T.; Nirmalathas, A.; Lim, C.; Novak, D.; Waterhouse, R. Performance analysis of optimized millimeter-wave fiber radio links. IEEE Trans. Microw. Theory Tech. 2006, 54, 921–928. [Google Scholar] [CrossRef]
- Ismail, T.; Liu, C.-P.; Mitchell, J.E.; Seeds, A.J. High-dynamic-range wireless-over-fiber link using feedforward linearization. IEEE J. Lightw. Technol. 2007, 25, 3274–3282. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, J.M.; Won, Y.Y.; Kwon, H.C.; Han, S.K. Linearization of RoF optical source by using light-injected gain modulation. Proc. Microw. Photonics 2005. [Google Scholar] [CrossRef]
- Novak, D.; Clark, T.; O’Connor, S.; Oursler, D.; Waterhouse, R. High performance, compact RF photonic transmitter with feedforward linearization. In Proceedings of Military Communication Conference 2010 (Milcom2010), San Jose, CA, USA, 31 October–3 November 2010; pp. 880–884.
- Shah, A.R.; Jalali, B. Adaptive equalisation for broadband predistortion linearisation of optical transmitters. IEEE Proc. Optoelectron. 2005, 152, 16–32. [Google Scholar] [CrossRef]
- Djupsjobacka, A. A linearization concept for integrated-optic modulators. IEEE Photonics Technol. Lett. 1992, 4, 869–872. [Google Scholar] [CrossRef]
- Skeie, H.; Johnson, R. Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes. Proc. SPIE Int. Soc. Opt. Eng. 1991, 1583, 153–164. [Google Scholar]
- Roselli, L.; Borgioni, V.; Zepparelli, F.; Ambrosi, F.; Comez, M.; Faccin, P.; Cassini, A. Analog laser predistortion for multiservice radio-over-fiber systems. IEEE J. Lightw. Technol. 2003, 21, 1211–1223. [Google Scholar] [CrossRef]
- LaGasse, M.J.; Charczenko, W.; Hamilton, M.C.; Thaniyavarn, S. Optical carrier filtering for high dynamic range fibre optic links. Electron. Lett. 1994, 30, 2157–2158. [Google Scholar]
- Esman, R.D.; Williams, K.J. Wideband efficiency improvement of fiber optic systems by carrier subtraction. IEEE Photonics Technol. Lett. 1995, 7, 218–220. [Google Scholar] [CrossRef]
- Attygalle, M.; Lim, C.; Pendock, G.J.; Nirmalathas, A.; Edvell, G. Transmission improvement in fiber wireless links using fiber Bragg gratings. IEEE Photonics Technol. Lett. 2005, 17, 190–192. [Google Scholar] [CrossRef]
- Lim, C.; Attygalle, M.; Nirmalathas, A.; Novak, D.; Waterhouse, R. Optical modulation depth analysis for improving transmission performance in fiber-radio links. IEEE Trans. Microw. Theory Tech. 2006, 54, 2181–2187. [Google Scholar] [CrossRef]
- Gamage, P.A.; Nirmalathas, A.; Lim, C.; Wong, E.; Novak, D.; Waterhouse, R. Experimental demonstration of digitized RF transport over optical fiber links. In Proceedings of the 2008 IEEE International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference (MWP2008/APMP2008), Gold Coast, Queensland, Australia, 9 September–3 October 2008; pp. 15–18.
- Nirmalathas, A.; Gamage, P.A.; Lim, C.; Novak, D.; Waterhouse, R.; Yang, Y. Digitized RF transmission over fiber. IEEE Microw. Mag. 2009, 10, 75–81. [Google Scholar]
- Meslener, G.J. Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection. IEEE J. Quantum Electron. 1984, 20, 1208–1216. [Google Scholar] [CrossRef]
- Schmuck, H. Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion. Electron. Lett. 1995, 31, 1848–1849. [Google Scholar] [CrossRef]
- OBSAI System Specification v2.0. Available online: http://www.obsai.com (accessed on 17 December 2013).
- CPRI Specification v6.0. Available online: http://www.cpri.info (accessed on 17 December 2013).
- Vaughan, R.G.; Scott, N.L.; White, D.R. The theory of bandpass sampling. IEEE Trans. Acoust. Speech Signal Process. 1991, 39, 1973–1984. [Google Scholar] [CrossRef]
- Lim, C.; Nirmalathas, A.; Novak, D.; Waterhouse, R.; Yoffe, G. Millimeter-wave broadband fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery. IEEE J. Lightw. Technol. 2000, 18, 1355–1363. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Yang, H.; Yang, Y.-M.; Lin, C.-T.; Ng’oma, A. 40 Gb/s RoF signal transmission with 10 m wireless distance at 60 GHz. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4–8 March 2012.
- Kanno, A.; Inagaki, K.; Morohashi, I.; Sakamoto, T.; Kuri, T.; Hosako, I.; Kawanishi, T.; Yoshida, Y.; Kitayama, K. 40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Exp. 2011, 19, B56–B63. [Google Scholar] [CrossRef]
- Zibar, D.; Sambaraju, R.; Caballero, A.; Herrera, J.; Westergren, U.; Walber, A.; Jensen, J.B.; Marti, J.; Monroy, I.T. High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM. IEEE Photonics Technol. Lett. 2011, 23, 810–812. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Chi, N.; Dong, Z.; Li, X.; Chang, G.K. Multichannel 120 Gb/s data transmission over 2x2 MIMO fiber-wireless link at W-band. IEEE Photonics Technol. Lett. 2013, 25, 780–783. [Google Scholar] [CrossRef]
- Ng’oma, A.; Shih, P.-T.; George, J.; Annunziata, F.; Sauer, M.; Lin, C.-T.; Jiang, W.-J.; Chen, J.; Chi, S. 21 Gbps OFDM wireless signal transmission at 60 GHz using a simple IMDD radio-over-fiber system. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010.
- Liu, C.; Jian, W.; Chien, H.-C.; Chowdhury, A.; Chang, G.-K. Experimental analyses and optimization of equalization techniques for 60-GHz OFDM radio-over-fiber system. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010.
- Lombard, P.; Le Guennec, Y.; Maury, G.; Novakov, E.; Cabon, B. Optical distribution and upconversion of MB-OFDM in ultrawide-band-over-fiber systems. IEEE OSA J. Lightw. Technol. 2009, 27, 1072–1078. [Google Scholar] [CrossRef]
- Hraimel, B.; Zhang, X.; Liu, T.; Xu, T.; Nie, Q.; Shen, D. Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut mach-zehnder modulator. IEEE Trans. Microw. Theory Tech. 2012, 60, 3328–3338. [Google Scholar] [CrossRef]
- Lebedev, A.; Pang, X.; Vegas Olmos, J.J.; Beltran, M.; Llorente, R.; Forchhammer, S.; Tafur Monroy, I. Feasibility study and experimental verification of simplified fiber-supported 60-GHz picocell mobile backhaul links. IEEE Photonics J. 2013. [Google Scholar] [CrossRef]
- Jazayerifar, M.; Cabon, B.; Salehi, J.A. Transmission of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber. IEEE OSA J. Lightw. Technol. 2008, 26, 2594–2603. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, C.; Nirmalathas, A. Digitized RF-over-fiber technique as an efficient solution for wideband wireless OFDM delivery. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4–8 March 2012.
- Ericsson (2007) Sustainable Energy Use in Mobile Communications, White Paper. Available online: http:// www.telecomtv.com (accessed on 17 December 2013).
- Pickavet, M.; Vereecken, W.; Demeyer, S.; Audenaert, P.; Vermeulen, B.; Develder, C.; Colle, D.; Dhoedt, B.; Demeester, P. Worldwide energy needs for ICT: The rise of power-aware networking. In Proceedings of the IEEE 2nd International Symposium on ANTS, Mumbai, Maharashtra, India, 15–17 December 2008.
- Etoh, M.; Ohya, T.; Nakayama, Y. Energy consumption issues on mobile network systems. In Proceedings of the International Symposium Issues on Mobile Network Systems, Turku, Finland, 28 July–1 August 2008; pp. 365–368.
- Deruyck, M.; Vereecken, W.; Tanghe, E.; Joseph, W.; Pickavet, M.; Martens, L.; Demeester, P. Power consumption in wireless access networks. In Proceedings of the 2010 European Wireless Conference, Lucca, Italy, 12–15 April 2010; pp. 924–931.
- Chowdhury, P.; Tornatore, M.; Sarkar, S.; Mukherjee, B. Building a green wireless-optical broadband access network (WOBAN). IEEE J. Lightw. Technol. 2010, 28, 2219–2229. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, C.; Nirmalathas, A. Comparison of energy consumption of integrated optical-wireless access networks. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 6–10 March 2011.
- Yang, Y.; Lim, C.; Nirmalathas, A. Radio-over-fiber as the energy efficient backhaul option for mobile base stations. In Proceedings of the International Topical Meeting on Microwave Photonics and Asia-Pacific Microwave Photonics (MWP/APMP2011), Singapore, 18–21 October 2011; pp. 242–245.
- Goldsmith, A. Wireless Communications; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Richter, F.; Fehske, A.J.; Fettweis, G.P. Energy efficiency aspects of base station deployment strategies for cellular networks. In Proceedings of the Vehicular Technology Conference Fall (VTC 2009-Fall), Anchorage, AK, USA, 20–23 September 2009.
- Lee, W.C.Y. Mobile Cellular Telecommunications Systems; McGraw-Hill Book Company: New York, NY, USA, 1990. [Google Scholar]
- Fehske, A.J.; Richter, F.; Fettweis, G.P. Energy efficiency improvements through micro sites in cellular mobile radio networks. In Proceedings of the GlobeCom Workshops, Honolulu, HI, USA, 30 November–4 December 2009.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lim, C.; Yang, Y.; Nirmalathas, A. Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency. Photonics 2014, 1, 67-82. https://doi.org/10.3390/photonics1020067
Lim C, Yang Y, Nirmalathas A. Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency. Photonics. 2014; 1(2):67-82. https://doi.org/10.3390/photonics1020067
Chicago/Turabian StyleLim, Christina, Yizhuo Yang, and Ampalavanapillai Nirmalathas. 2014. "Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency" Photonics 1, no. 2: 67-82. https://doi.org/10.3390/photonics1020067
APA StyleLim, C., Yang, Y., & Nirmalathas, A. (2014). Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency. Photonics, 1(2), 67-82. https://doi.org/10.3390/photonics1020067