Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency
Abstract
:1. Introduction

2. Wireless Signals Transport Strategies for Fiber-Wireless Link


3. Transmission Experiment Comparing Analog and Digitized RF-over-Fiber Transport
3.1. Experimental Demonstration

3.2. Experimental Results and Discussions

4. Energy Consumption of Different Transport Schemes
4.1. Single Base Station Energy Consumption for Different Transport Schemes
| Parameter | Estimated Value | Parameter | Estimated Value | |
|---|---|---|---|---|
| Power consumption of baseband unit (PBBU) | 58 W | PA efficiency (μPA) | BBoF, DIFoF, DRFoF | 25% |
| IFoF, RFoF | 15% | |||
| Power consumption of DUC/DDC (PDUC/DDC) | 3 W | Transmitting power (PTX) | 40 W | |
| Power consumption of ADC/DAC (PADC/DAC) | 2 W | Feeder loss (Lfeeder) | BBoF | 0.5 |
| IFoF, RFoF, DIFoF, DRFoF | 1 | |||
| Power consumption of digital pre-distortion (PDPD) | 5 W | Power supply loss (LPS) | 0.15 | |
| Power consumption of RF unit (PRFU) | 2 W | Cooling efficiency (μC) | 0.2 | |
| Power consumption of clock management (PC) | 1 W | Number of sectors (Nsector) | 3 | |



4.2. Energy Consumption per Unit Coverage
/2d2. To ensure that the entire cell is covered, the transmitting power (PTX) has to be greater than the customer’s receiver sensitivity (PRX) after taking into account the propagation loss (PL) over a distance of d. The PL quantifies the wireless signal deterioration due to path loss, shadowing and multipath fading which can be formulated into Equation (2) [42]. The value is dependent on man-made structures [42,43] and hence, is different for different areas. Using the estimated parameters in [44] and Equation (2), we are able to estimate the propagation losses for rural and urban areas which are quantified by Equations (3) and (4). Figure 9b shows the maximum cell side lengths (d) at different transmitting power in both rural and urban areas for a typical receiver sensitivity of −120 dBm. It is obvious that the cell size is much larger for rural area compared to urban area for the same base station transmitting power. Since the propagation models are different for urban and rural areas, we will investigate the power consumption per square meter as a function of cell size for both rural and urban areas separately.
4.2.1. Rural Area

4.2.2. Urban Area

5. Conclusions
Acknowledgements
Authors Contributions
Conflicts of Interest
References
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Nirmalathas, A.; Lim, C.; Novak, D.; Waterhouse, R.B. Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks. In Millimeter Waves in Communication Systems, 1st ed.; Michel, N., Ed.; Hermes Penton Science Ltd.: London, UK, 2002; pp. 43–67. [Google Scholar]
- Lim, C.; Nirmalathas, A.; Bakaul, M.; Gamage, P.; Lee, K.L.; Yang, Y.; Novak, D.; Waterhouse, R. Fiber-wireless networks and subsystem technologies. IEEE J. Lightw. Technol. 2010, 28, 390–405. [Google Scholar] [CrossRef]
- Kurniawan, T.; Nirmalathas, A.; Lim, C.; Novak, D.; Waterhouse, R. Performance analysis of optimized millimeter-wave fiber radio links. IEEE Trans. Microw. Theory Tech. 2006, 54, 921–928. [Google Scholar] [CrossRef]
- Ismail, T.; Liu, C.-P.; Mitchell, J.E.; Seeds, A.J. High-dynamic-range wireless-over-fiber link using feedforward linearization. IEEE J. Lightw. Technol. 2007, 25, 3274–3282. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, J.M.; Won, Y.Y.; Kwon, H.C.; Han, S.K. Linearization of RoF optical source by using light-injected gain modulation. Proc. Microw. Photonics 2005. [Google Scholar] [CrossRef]
- Novak, D.; Clark, T.; O’Connor, S.; Oursler, D.; Waterhouse, R. High performance, compact RF photonic transmitter with feedforward linearization. In Proceedings of Military Communication Conference 2010 (Milcom2010), San Jose, CA, USA, 31 October–3 November 2010; pp. 880–884.
- Shah, A.R.; Jalali, B. Adaptive equalisation for broadband predistortion linearisation of optical transmitters. IEEE Proc. Optoelectron. 2005, 152, 16–32. [Google Scholar] [CrossRef]
- Djupsjobacka, A. A linearization concept for integrated-optic modulators. IEEE Photonics Technol. Lett. 1992, 4, 869–872. [Google Scholar] [CrossRef]
- Skeie, H.; Johnson, R. Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes. Proc. SPIE Int. Soc. Opt. Eng. 1991, 1583, 153–164. [Google Scholar]
- Roselli, L.; Borgioni, V.; Zepparelli, F.; Ambrosi, F.; Comez, M.; Faccin, P.; Cassini, A. Analog laser predistortion for multiservice radio-over-fiber systems. IEEE J. Lightw. Technol. 2003, 21, 1211–1223. [Google Scholar] [CrossRef]
- LaGasse, M.J.; Charczenko, W.; Hamilton, M.C.; Thaniyavarn, S. Optical carrier filtering for high dynamic range fibre optic links. Electron. Lett. 1994, 30, 2157–2158. [Google Scholar]
- Esman, R.D.; Williams, K.J. Wideband efficiency improvement of fiber optic systems by carrier subtraction. IEEE Photonics Technol. Lett. 1995, 7, 218–220. [Google Scholar] [CrossRef]
- Attygalle, M.; Lim, C.; Pendock, G.J.; Nirmalathas, A.; Edvell, G. Transmission improvement in fiber wireless links using fiber Bragg gratings. IEEE Photonics Technol. Lett. 2005, 17, 190–192. [Google Scholar] [CrossRef]
- Lim, C.; Attygalle, M.; Nirmalathas, A.; Novak, D.; Waterhouse, R. Optical modulation depth analysis for improving transmission performance in fiber-radio links. IEEE Trans. Microw. Theory Tech. 2006, 54, 2181–2187. [Google Scholar] [CrossRef]
- Gamage, P.A.; Nirmalathas, A.; Lim, C.; Wong, E.; Novak, D.; Waterhouse, R. Experimental demonstration of digitized RF transport over optical fiber links. In Proceedings of the 2008 IEEE International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference (MWP2008/APMP2008), Gold Coast, Queensland, Australia, 9 September–3 October 2008; pp. 15–18.
- Nirmalathas, A.; Gamage, P.A.; Lim, C.; Novak, D.; Waterhouse, R.; Yang, Y. Digitized RF transmission over fiber. IEEE Microw. Mag. 2009, 10, 75–81. [Google Scholar]
- Meslener, G.J. Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection. IEEE J. Quantum Electron. 1984, 20, 1208–1216. [Google Scholar] [CrossRef]
- Schmuck, H. Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion. Electron. Lett. 1995, 31, 1848–1849. [Google Scholar] [CrossRef]
- OBSAI System Specification v2.0. Available online: http://www.obsai.com (accessed on 17 December 2013).
- CPRI Specification v6.0. Available online: http://www.cpri.info (accessed on 17 December 2013).
- Vaughan, R.G.; Scott, N.L.; White, D.R. The theory of bandpass sampling. IEEE Trans. Acoust. Speech Signal Process. 1991, 39, 1973–1984. [Google Scholar] [CrossRef]
- Lim, C.; Nirmalathas, A.; Novak, D.; Waterhouse, R.; Yoffe, G. Millimeter-wave broadband fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery. IEEE J. Lightw. Technol. 2000, 18, 1355–1363. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Yang, H.; Yang, Y.-M.; Lin, C.-T.; Ng’oma, A. 40 Gb/s RoF signal transmission with 10 m wireless distance at 60 GHz. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4–8 March 2012.
- Kanno, A.; Inagaki, K.; Morohashi, I.; Sakamoto, T.; Kuri, T.; Hosako, I.; Kawanishi, T.; Yoshida, Y.; Kitayama, K. 40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Exp. 2011, 19, B56–B63. [Google Scholar] [CrossRef]
- Zibar, D.; Sambaraju, R.; Caballero, A.; Herrera, J.; Westergren, U.; Walber, A.; Jensen, J.B.; Marti, J.; Monroy, I.T. High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM. IEEE Photonics Technol. Lett. 2011, 23, 810–812. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Chi, N.; Dong, Z.; Li, X.; Chang, G.K. Multichannel 120 Gb/s data transmission over 2x2 MIMO fiber-wireless link at W-band. IEEE Photonics Technol. Lett. 2013, 25, 780–783. [Google Scholar] [CrossRef]
- Ng’oma, A.; Shih, P.-T.; George, J.; Annunziata, F.; Sauer, M.; Lin, C.-T.; Jiang, W.-J.; Chen, J.; Chi, S. 21 Gbps OFDM wireless signal transmission at 60 GHz using a simple IMDD radio-over-fiber system. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010.
- Liu, C.; Jian, W.; Chien, H.-C.; Chowdhury, A.; Chang, G.-K. Experimental analyses and optimization of equalization techniques for 60-GHz OFDM radio-over-fiber system. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010.
- Lombard, P.; Le Guennec, Y.; Maury, G.; Novakov, E.; Cabon, B. Optical distribution and upconversion of MB-OFDM in ultrawide-band-over-fiber systems. IEEE OSA J. Lightw. Technol. 2009, 27, 1072–1078. [Google Scholar] [CrossRef]
- Hraimel, B.; Zhang, X.; Liu, T.; Xu, T.; Nie, Q.; Shen, D. Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut mach-zehnder modulator. IEEE Trans. Microw. Theory Tech. 2012, 60, 3328–3338. [Google Scholar] [CrossRef]
- Lebedev, A.; Pang, X.; Vegas Olmos, J.J.; Beltran, M.; Llorente, R.; Forchhammer, S.; Tafur Monroy, I. Feasibility study and experimental verification of simplified fiber-supported 60-GHz picocell mobile backhaul links. IEEE Photonics J. 2013. [Google Scholar] [CrossRef]
- Jazayerifar, M.; Cabon, B.; Salehi, J.A. Transmission of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber. IEEE OSA J. Lightw. Technol. 2008, 26, 2594–2603. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, C.; Nirmalathas, A. Digitized RF-over-fiber technique as an efficient solution for wideband wireless OFDM delivery. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4–8 March 2012.
- Ericsson (2007) Sustainable Energy Use in Mobile Communications, White Paper. Available online: http:// www.telecomtv.com (accessed on 17 December 2013).
- Pickavet, M.; Vereecken, W.; Demeyer, S.; Audenaert, P.; Vermeulen, B.; Develder, C.; Colle, D.; Dhoedt, B.; Demeester, P. Worldwide energy needs for ICT: The rise of power-aware networking. In Proceedings of the IEEE 2nd International Symposium on ANTS, Mumbai, Maharashtra, India, 15–17 December 2008.
- Etoh, M.; Ohya, T.; Nakayama, Y. Energy consumption issues on mobile network systems. In Proceedings of the International Symposium Issues on Mobile Network Systems, Turku, Finland, 28 July–1 August 2008; pp. 365–368.
- Deruyck, M.; Vereecken, W.; Tanghe, E.; Joseph, W.; Pickavet, M.; Martens, L.; Demeester, P. Power consumption in wireless access networks. In Proceedings of the 2010 European Wireless Conference, Lucca, Italy, 12–15 April 2010; pp. 924–931.
- Chowdhury, P.; Tornatore, M.; Sarkar, S.; Mukherjee, B. Building a green wireless-optical broadband access network (WOBAN). IEEE J. Lightw. Technol. 2010, 28, 2219–2229. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, C.; Nirmalathas, A. Comparison of energy consumption of integrated optical-wireless access networks. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 6–10 March 2011.
- Yang, Y.; Lim, C.; Nirmalathas, A. Radio-over-fiber as the energy efficient backhaul option for mobile base stations. In Proceedings of the International Topical Meeting on Microwave Photonics and Asia-Pacific Microwave Photonics (MWP/APMP2011), Singapore, 18–21 October 2011; pp. 242–245.
- Goldsmith, A. Wireless Communications; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Richter, F.; Fehske, A.J.; Fettweis, G.P. Energy efficiency aspects of base station deployment strategies for cellular networks. In Proceedings of the Vehicular Technology Conference Fall (VTC 2009-Fall), Anchorage, AK, USA, 20–23 September 2009.
- Lee, W.C.Y. Mobile Cellular Telecommunications Systems; McGraw-Hill Book Company: New York, NY, USA, 1990. [Google Scholar]
- Fehske, A.J.; Richter, F.; Fettweis, G.P. Energy efficiency improvements through micro sites in cellular mobile radio networks. In Proceedings of the GlobeCom Workshops, Honolulu, HI, USA, 30 November–4 December 2009.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lim, C.; Yang, Y.; Nirmalathas, A. Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency. Photonics 2014, 1, 67-82. https://doi.org/10.3390/photonics1020067
Lim C, Yang Y, Nirmalathas A. Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency. Photonics. 2014; 1(2):67-82. https://doi.org/10.3390/photonics1020067
Chicago/Turabian StyleLim, Christina, Yizhuo Yang, and Ampalavanapillai Nirmalathas. 2014. "Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency" Photonics 1, no. 2: 67-82. https://doi.org/10.3390/photonics1020067
APA StyleLim, C., Yang, Y., & Nirmalathas, A. (2014). Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency. Photonics, 1(2), 67-82. https://doi.org/10.3390/photonics1020067
