Study of Volatile Organic Compounds in Emission from Bottom Sediments of Three Lakes with Impact of Anthropopression Using the Proton Transfer Reaction Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling of Bottom Sediments
2.3. Laboratory Analyses of Volatile Organic Compounds
2.4. Statistical Analysis
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bojakowska, I.; Dobek, P.; Kucharzyk, J. Geochemical characteristics of sediments of reservoir zadębie in Skierniewice. Biul. Państwowego Inst. Geol. 2017, 470, 9–16. [Google Scholar] [CrossRef]
- Szymański, D.; Dunalska, J.; Łopata, M.; Bigaj, I.; Zieliński, R. Characteristics of bottom sediments of Lake Widryńskie. Limnol. Rev. 2012, 12, 205–210. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Kostka, A. Lead in the environment of Lake Wigry (NE Poland). Limnol. Rev. 2011, 11, 59–68. [Google Scholar] [CrossRef]
- Januszkiewicz, T. Chemistry of recent sediment of Grabowskie Lake in Kustubian Lakes District in northern Poland. Pol. Arch. Hydrobiol. 1980, 27, 319–336. [Google Scholar]
- Trojanowski, J.; Bruski, J. Chemical and physical characteristics of bottom sediment top layer in Rzuno lake. Arch. Environ. Prot. 2003, 29, 135–148. [Google Scholar]
- Sekabira, K.; Origa, O.H.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef]
- Bojakowska, I.; Lech, D.; Jaroszyńska, J. Heavy metals in sediments of water bodies in the Służew stream catchment (Warsaw area). NREI 2014, 25, 27–33. [Google Scholar] [CrossRef]
- Legret, M.; Pagotto, C. Heavy metal deposition and soil pollution along two major rural highways. Environ. Technol. 2006, 27, 247–254. [Google Scholar] [CrossRef]
- Guney, M.; Onaya, T.; Copty, N. Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey. Environ. Monit. Assess. 2009, 164, 101–110. [Google Scholar] [CrossRef]
- Carroll, G.T.; Kirschman, D.L. A peripherally located air recirculation device containing an activated carbon filter reduces VOC levels in a simulated operating room. ACS Omega 2022, 7, 46640–46645. [Google Scholar] [CrossRef]
- Legreid, G.; Lööv, J.B.; Staehelin, J.; Hueglin, C.; Hill, M.; Buchmann, B.; Prevot, A.S.H.; Reimann, S. Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): Seasonal variation and source allocation. Atmos. Environ. 2007, 41, 8409–8423. [Google Scholar] [CrossRef]
- Norris, C.; Fang, L.; Barkjohn, K.K.; Carlson, D.; Zhang, Y.; Mo, J.; Li, Z.; Zhang, J.; Cui, X.; Schauer, J.J.; et al. Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations. Chemosphere 2019, 231, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Kuráň, P.; Soják, L. Environmental analysis of volatile organic compounds in water and sediment by gas chromatography. J. Chromatogr. A 1996, 733, 119–141. [Google Scholar] [CrossRef]
- Bianchi, A.P.; Varney, M.S.; Phillips, J. Analysis of volatile organic compounds in estuarine sediments using dynamic headspace and gas chromatography—Mass spectrometry. J. Chromatogr. A 1991, 542, 413–450. [Google Scholar] [CrossRef]
- Campillo, N.; Aguinaga, N.; Viñas, P.; López-García, I.; Hernández-Córdoba, M. Speciation of organotin compounds in waters and marine sediments using purge-and-trap capillary gas chromatography with atomic emission detection. Anal. Chim. Acta 2004, 525, 273–280. [Google Scholar] [CrossRef]
- Amaral, O.C.; Olivella, L.; Grimalt, J.O.; Albaiges, J. Combined solvent extraction-purge and trap method for the determination of volatile organic compounds in sediments. J. Chromatogr. A 1994, 675, 177–187. [Google Scholar] [CrossRef]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Capozzi, V.; Spano, G.; Biasioli, F. Proton transfer reaction–mass spectrometry: Online and rapid determination of volatile organic compounds of microbial origin. Appl. Microbiol. Biotechnol. 2015, 99, 3787–3795. [Google Scholar] [CrossRef] [PubMed]
- Roslund, K.; Lehto, M.; Pussinen, P.; Hartonen, K.; Groop, P.H.; Halonen, L.; Metsälä, M. Identifying volatile in vitro biomarkers for oral bacteria with proton-transfer-reaction mass spectrometry and gas chromatography-mass spectrometry. Sci. Rep. 2021, 11, 16897. [Google Scholar] [CrossRef]
- Ciesa, F.; Höller, I.; Guerra, W.; Berger, J.; Dalla Via, J.; Oberhuber, M. Chemodiversity in the Fingerprint Analysis of Volatile Organic Compounds (VOCs) of 35 Old and 7 Modern Apple Cultivars Determined by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) in Two Different Seasons. Chem. Biodivers. 2015, 12, 800–812. [Google Scholar] [CrossRef]
- Nenadis, N.; Heenan, S.; Tsimidou, M.Z.; Van Ruth, S. Applicability of PTR-MS in the quality control of saffron. Food Chem. 2016, 196, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Granitto, P.M.; Biasioli, F.; Aprea, E.; Mott, D.; Furlanello, C.; Märk, T.D.; Gasperi, F. Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques. Sens. Actuators B 2007, 121, 379–385. [Google Scholar] [CrossRef]
- Schade, G.W.; Custer, T.G. OVOC emissions from agricultural soil in northern Germany during the 2003 European heat wave. Atmos. Environ. 2004, 38, 6105–6114. [Google Scholar] [CrossRef]
- Feilberg, A.; Bildsoe, P.; Nyord, T. Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry. Sensors 2015, 15, 1148–1167. [Google Scholar] [CrossRef] [PubMed]
- Mayrhofer, S.; Mikoviny, T.; Waldhuber, S.; Wagner, A.O.; Innerebner, G.; Franke-Whittle, I.H.; Märk, T.D.; Hansel, A.; Insam, H. Microbial community related to volatile organic compound (VOC) emission in household biowaste. Environ. Microbiol. 2006, 8, 1960–1974. [Google Scholar] [CrossRef]
- Byliński, H.; Barczak, R.J.; Gębicki, J.; Namieśnik, J. Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction—Mass spectrometry. Environ. Sci. Pollut. Res. 2019, 26, 5500–5513. [Google Scholar] [CrossRef] [PubMed]
- Jańczak, J. Atlas Jezior Polski; Tom 1 and 2; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 1997. [Google Scholar]
- Trojanowski, J.; Trojanowska, C. Stan zanieczyszczenia jezior człuchowskich. Arch. Environ. Prot. 1999, 25, 91–109. [Google Scholar]
- Kołsut, B. Chojnicko-Człuchowski Zespół Miejski. Poziom Rozwoju i Wzajemne Powiązania; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2012; p. 82. [Google Scholar]
- Antonowicz, J.P.; Kozak, A. Phytoneuston and Chemical Composition of Surface Microlayer of Urban Water Bodies. Water 2020, 12, 1904. [Google Scholar] [CrossRef]
- Klimaszyk, P.; Borowiak, D.; Piotrowicz, R.; Rosińska, J.; Szeląg-Wasielewska, E.; Kraska, M. The Effect of Human Impact on the Water Quality and Biocoenoses of the Soft Water Lake with Isoetids: Lake Jeleń, NW Poland. Water 2020, 12, 945. [Google Scholar] [CrossRef]
- Klimaszyk, P.; Kraska, M.; Piotrowicz, R. Jeziora lobeliowe w badaniach Zakładu Ochrony Wód UAM. In Ekosystemy Wodne. Funkcjonowanie, Znaczenie, Ochrona i Rekultywacja; Budzyńska, A., Dondajewska-Pielka, R., Rosińska, J., Kozak, A., Kowalczewska-Madura, K., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2019. [Google Scholar]
- Kraska, M.; Dąbrowska, B.B.; Pełechaty, M. Roślinność oraz stężenia substancji biogennych i humusowych w ekotonach wybranych jezior lobeliowych. In Ekotony Słodkowodne: Struktura—Rodzaje—Funkcjonowanie; Radwan, S., Ed.; Wydawnictwo UMCS: Lublin, Poland, 1998; pp. 89–98. [Google Scholar]
- Wróblewski, T.; Kamińska, A.; Włodarkiewicz, A.; Ushakou, D. Studies of volatile organic compounds emission from fragaria vesca and fragaria ananassa using proton transfer reaction mass spectrometry. Acta Phys. Pol. B Proc. Suppl. 2020, 12, 899–906. [Google Scholar] [CrossRef]
- Hansen, M.J.; Adamsen, A.P.S.; Feilberg, A. Recovery of Odorants from an Olfactometer Measured by Proton-Transfer-Reaction Mass Spectrometry. Sensors 2013, 13, 7860–7871. [Google Scholar] [CrossRef]
- Biasioli, F.; Gasperi, F.; Aprea, E.; Mott, D.; Boscaini, E.; Mayr, D.; Märk, R.D. Coupling proton transfer reaction− mass spectrometry with linear discriminant analysis: A case study. J. Agric. Food Chem. 2003, 51, 7227–7233. [Google Scholar] [CrossRef]
- StatSoft Inc. Statistica (Data Analysis Software System); Version 13.3; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Hammer, Ø. PAST. In Paleontological Statistics. Reference Manual; Natural History Museum, University of Oslo: Oslo, Norway, 2023. [Google Scholar]
- Mancuso, S.; Taiti, C.; Bazihizina, N.; Costa, C.; Menesatti, P.; Giagnoni, L.; Arenella, M.; Nannipieri, P.; Renella, G. Soil volatile analysis by proton transfer reaction-time of flight mass spectrometry (PTR-TOF-MS). Appl. Soil Ecol. 2015, 86, 182–191. [Google Scholar] [CrossRef]
- Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Märk, L.; Seehauser, H.; Schottkowsky, R.; Sulzer, P.; Märk, T.D. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 2009, 286, 122–128. [Google Scholar] [CrossRef]
- Jardine, K.; Wegener, F.; Abrell, L.; Van Haren, J.; Werner, C. Phytogenic methyl acetate. Plant Cell Environ. 2014, 37, 414–424. [Google Scholar] [CrossRef]
- Pyysalo, T.; Honkanen, E.; Hirvi, T. Volatiles of wild strawberries, Fragaria vesca L., compared to those of cultivated berries, Fragaria x ananassa cv. Senga Sengana. J. Agric. Food Chem. 1979, 27, 19–22. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Sun, J.; Huang, C.; Zhai, H. Current status of phenolic pollution in urban lakes and its toxicity to cells—A case study of Xi’an, China. Arch. Environ. Prot. 2023, 49, 63–73. [Google Scholar]
- Lomans, B.P.; Smolders, A.; Intven, L.M.; Pol, A.; Op, D.; Van Der Drift, C. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl. Environ. Microbiol. 1997, 63, 4741–4747. [Google Scholar] [CrossRef]
- Lee, C.-L.; Brimblecombe, P. Anthropogenic contributions to global carbonyl sulfide, carbon disulfide and organosulfides fluxes. Earth—Sci. Rev. 2016, 160, 1–18. [Google Scholar]
Lake Rychnowskie | Lake Łazienkowskie | Lake Jeleń | |
---|---|---|---|
Latitude and longitude | 53°40.5′–17°24.1′ | 53°38.9′–17°28.6′ | 53°49.6′–17°35.7′ |
Surface area [ha] | 158.7 | 36.2 | 88.9 |
Volume [thous.—m3] | 20,823.0 | 3715.9 | 8461.1 |
Maximum depth [m] | 31.5 | 20.5 | 33.2 |
Average depth [m] | 13.1 | 10.2 | 9.5 |
Maximum length [m] | 2565 | 1250 | 2025 |
Maximum width [m] | 1025 | 405 | 750 |
VOC | Mean | Min | Max | CV |
---|---|---|---|---|
m/z 57 | 50.57 | 8.33 | 225.15 | 106.69 |
m/z 61 | 36.40 | 21.21 | 84.60 | 41.07 |
m/z 63 | 97.43 | 1.72 | 828.29 | 218.70 |
m/z 69 | 8.06 | 3.23 | 19.11 | 55.83 |
m/z 75 | 19.75 | 2.62 | 123.38 | 118.69 |
m/z 81 | 8.11 | 2.04 | 19.57 | 61.05 |
m/z 83 | 9.18 | 2.57 | 38.15 | 80.51 |
m/z 85 | 7.06 | 2.47 | 26.56 | 66.89 |
m/z 87 | 13.10 | 2.44 | 39.92 | 86.06 |
m/z 95 | 19.02 | 2.23 | 67.94 | 98.37 |
m/z 97 | 14.55 | 2.43 | 88.79 | 122.33 |
m/z 99 | 5.84 | 2.04 | 19.65 | 61.27 |
m/z 101 | 5.85 | 2.93 | 11.54 | 38.99 |
m/z 109 | 9.16 | 2.24 | 22.05 | 58.15 |
m/z 111 | 8.37 | 1.18 | 38.89 | 97.37 |
m/z 127 | 6.60 | 1.97 | 17.35 | 67.72 |
m/z 129 | 2.99 | 0.76 | 6.85 | 49.73 |
m/z 137 | 8.01 | 2.18 | 21.56 | 72.18 |
m/z 149 | 4.48 | 0.94 | 15.18 | 84.95 |
m/z 157 | 2.51 | 0.61 | 5.10 | 48.80 |
ANOVA Test | RIR Tukey Test | ||
---|---|---|---|
VOC | F | p | |
m/z 61 | 4.58 | * | R-J |
m/z 69 | 17.22 | *** | R-Ł, R-J, J-Ł |
m/z 75 | 2.28 | ns | ns |
m/z 81 | 12.68 | *** | R-J, Ł-J |
m/z 83 | 2.82 | ns | ns |
m/z 85 | 5.05 | * | Ł-J |
m/z 87 | 5.11 | * | R-J |
m/z 95 | 7.79 | ** | R-J, Ł-J |
m/z 99 | 5.74 | ** | Ł-J |
m/z 101 | 10.44 | *** | R-J, Ł-J |
m/z 109 | 17.03 | *** | R-Ł, R-J, J-Ł |
m/z 111 | 3.23 | ns | ns |
m/z 127 | 8.38 | ** | R-J, Ł-J |
m/z 129 | 10.66 | *** | R-J |
m/z 137 | 34.93 | *** | R-Ł, R-J |
m/z 157 | 30.81 | *** | R-Ł, R-J, J-Ł |
Kruskal–Wallis Test | Post Hoc Dunn Test | ||
---|---|---|---|
VOC | H | p | |
m/z 57 | 18.84 | *** | R-Ł, R-J |
m/z 63 | 17.824 | *** | R-Ł, R-J |
m/z 97 | 11.25 | ** | R-Ł, R-J |
m/z 149 | 18.75 | *** | R-Ł, R-J |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonowicz, J.; Wróblewski, T. Study of Volatile Organic Compounds in Emission from Bottom Sediments of Three Lakes with Impact of Anthropopression Using the Proton Transfer Reaction Mass Spectrometry. Limnol. Rev. 2024, 24, 205-216. https://doi.org/10.3390/limnolrev24030012
Antonowicz J, Wróblewski T. Study of Volatile Organic Compounds in Emission from Bottom Sediments of Three Lakes with Impact of Anthropopression Using the Proton Transfer Reaction Mass Spectrometry. Limnological Review. 2024; 24(3):205-216. https://doi.org/10.3390/limnolrev24030012
Chicago/Turabian StyleAntonowicz, Józef, and Tomasz Wróblewski. 2024. "Study of Volatile Organic Compounds in Emission from Bottom Sediments of Three Lakes with Impact of Anthropopression Using the Proton Transfer Reaction Mass Spectrometry" Limnological Review 24, no. 3: 205-216. https://doi.org/10.3390/limnolrev24030012
APA StyleAntonowicz, J., & Wróblewski, T. (2024). Study of Volatile Organic Compounds in Emission from Bottom Sediments of Three Lakes with Impact of Anthropopression Using the Proton Transfer Reaction Mass Spectrometry. Limnological Review, 24(3), 205-216. https://doi.org/10.3390/limnolrev24030012