Next Issue
Volume 18, June
Previous Issue
Volume 17, December
 
 
Limnological Review is published by MDPI from Volume 22 Issue 1 (2022). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Sciendo.

Limnol. Rev., Volume 18, Issue 1 (March 2018) – 5 articles , Pages 3-44

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
633 KiB  
Article
The Influence of Urban Agglomeration on a Small Natural Water Reservoir
by Tadeusz Sobczyński and Przemysław Niedzielski
Limnol. Rev. 2018, 18(1), 39-44; https://doi.org/10.2478/limre-2018-0005 - 26 Apr 2018
Viewed by 257
Abstract
The aim of the study was to determine the influence of urban agglomeration on a small, natural water reservoir which, as a result of the expansion of the city of Poznań, has become an urban lake. In the vegetation period 2015, the chemistry [...] Read more.
The aim of the study was to determine the influence of urban agglomeration on a small, natural water reservoir which, as a result of the expansion of the city of Poznań, has become an urban lake. In the vegetation period 2015, the chemistry of its water was studied, and in September additional samples of bottom sediments, plants and fish were collected for analysis in order to determine the content of heavy metals. In terms of productivity, no significant influence of the catchment was recorded. In the 1980s the lake was defined as eutrophic, and in 1996 as α-mesotrophic and such a state continues until today. This is the result of protective activity undertaken by its new owner. The adverse influence of the urbanization of the surrounding areas was reflected by the increased content of lead in particular elements of this ecosystem, that is, in bottom sediments, plants and fish muscles. Full article
448 KiB  
Article
Changes in Chara hispida L. Morphology in Response to Phosphate Aluminium Coagulant Application
by Michał Rybak and Tomasz Joniak
Limnol. Rev. 2018, 18(1), 31-37; https://doi.org/10.2478/limre-2018-0004 - 26 Apr 2018
Cited by 4 | Viewed by 236
Abstract
Progressing eutrophication of waterbodies requires measures to be undertaken that aim at halting or reversing negative changes in the environment. Chemical restoration is one of the most common methods used for lake treatment, where iron or aluminium phosphate coagulants are applied. However, their [...] Read more.
Progressing eutrophication of waterbodies requires measures to be undertaken that aim at halting or reversing negative changes in the environment. Chemical restoration is one of the most common methods used for lake treatment, where iron or aluminium phosphate coagulants are applied. However, their chemical qualities pose the risk of acidification and aluminium ion release, which become toxic in acidic conditions. The influence of coagulants on aquatic plants, including charophytes that are very valuable from the ecological perspective, is little recognised. For this reason, the aim of the research was to define changes in the growth pattern of the charophyte Chara hispida under the influence of an aluminium coagulant. The research was carried out in mesocosms (0.8 m3) located in situ in a lake. Polyaluminium chloride was applied once to each chamber in doses of 50.0, 100.0 and 200.0 ml m−3. Coagulant concentrations reflected aggressive restoration aimed at precipitation of phosphates, suspension and water colour at the same time. It was proved that the coagulant had inhibited the growth and slightly reduced the length of branchlets, and simultaneously elongated internode cells. Changes in the total length as well as the length of branchlets were caused by a strong pH decrease of the environment which simultaneously induced higher aluminium solubility and toxicity. Elongation of internode cells was caused by reduced light availability, resulting from high water turbidity in the first stage of coagulant’s application, and then from the charophytes’ thallus being covered by a coagulated suspension precipitated from water. Full article
3114 KiB  
Article
The Variations of Physico-Chemical Parameters during Summer in Lake Erenciuc from the Danube Delta (Romania)
by Gheorghe Romanescu, Alin Mihu-Pintilie, Cristian Trifanov and Cristian C. Stoleriu
Limnol. Rev. 2018, 18(1), 21-29; https://doi.org/10.2478/limre-2018-0003 - 26 Apr 2018
Cited by 4 | Viewed by 293
Abstract
Lake Erenciuc is situated in the Danube Delta (Romania) and was created in the abandoned riverbed of the Sfântu Gheorghe arm. It is the largest meander lake in Romania. During spring–summer, the physico-chemical parameters of water have been measured in seven lake sampling [...] Read more.
Lake Erenciuc is situated in the Danube Delta (Romania) and was created in the abandoned riverbed of the Sfântu Gheorghe arm. It is the largest meander lake in Romania. During spring–summer, the physico-chemical parameters of water have been measured in seven lake sampling points and one at the Sfântu Gheorghe branch, which supplies the lake through Erenciuc channel. The area around Lake Erenciuc belongs to the category of strictly protected areas within the Danube Delta Biosphere Reserve. The following water quality parameters were measured: temperature (T: °C); pH (pH units); Luminescent Dissolved Oxygen (LDO: mg dm−3); Dissolved Oxygen saturation (DO: %); water tension (U: mV); Electrical Conductivity (EC: μS cm−1); Total Dissolved Solids concentration (TDS: mg dm−3). The recorded values are easily differentiated across the entire length of the elongated lake path, especially between inflow (upstream) and outflow (downstream). The parameters recorded during the spring–summer period, with high flow rates and high water levels, demonstrate good lake water quality, especially oxygenation. The study also demonstrates that high waters refresh and recalibrate the water quality in isolated lake basins. Full article
2422 KiB  
Article
Correspondence of Zooplankton Assemblage and Water Quality in Wetlands of Cachar, Assam, India: Implications for Environmental Management
by Sulata Kar, Papia Das, Uma Das, Maibam Bimola, Devashish Kar and Gautam Aditya
Limnol. Rev. 2018, 18(1), 9-19; https://doi.org/10.2478/limre-2018-0002 - 26 Apr 2018
Cited by 7 | Viewed by 414
Abstract
The zooplankton assemblage of selected wetlands of Assam, India was assessed to deduce the structural variation in the context of water quality parameters. A two year study between 2012 and 2014 comprising of 530 samples from the five wetlands revealed the presence of [...] Read more.
The zooplankton assemblage of selected wetlands of Assam, India was assessed to deduce the structural variation in the context of water quality parameters. A two year study between 2012 and 2014 comprising of 530 samples from the five wetlands revealed the presence of 46 taxa, 26 Rotifera, 15 Cladocera, 4 Copepoda and 1 Ostracoda, in varying density. The rotifers dominated in terms of abundance (48 ind. cm−3) followed by the cladocerans (28 ind. cm−3) and the copepods (19 ind. cm−3) and showed significant (p < 0.05) correlations with turbidity, alkalinity, hardness and phosphate contents of the water samples. The diversity and the richness of the zooplankton showed an increasing trend with the water temperature. Among the different taxa, Brachionus sp. was most abundant followed by Mesocyclops sp. while Beauchampiella sp. was represented in the least numbers. Application of the cluster analysis allowed the segregation of the different zooplankton based on the similarities of abundance in the samples. The water quality parameters like temperature, alkalinity, turbidity, magnesium and calcium were observed to be significant contributors in shaping the zooplankton community composition of the wetlands, revealed through the correlations and canonical correspondence analysis. As an extension, the information can be used in monitoring the quality of the freshwater habitats of the concerned and similar geographical regions, using the zooplankton as the major constituents. The variations in the abundance of cladoceran, copepod and rotifer zooplanktons can be used to understand the mechanisms that sustain the food webs of the aquatic community of the freshwater bodies. Full article
729 KiB  
Article
The Geochemical and Isotopic Carbon Cycle in an Urban Pond in the City of Wroclaw
by Wojciech Drzewicki, Pola Kościukiewicz and Adriana Trojanowska-Olichwer
Limnol. Rev. 2018, 18(1), 3-8; https://doi.org/10.2478/limre-2018-0001 - 26 Apr 2018
Viewed by 270
Abstract
The aim of this study was a recognition of the carbon cycle in a small anthropogenic reservoir located in Wrocław (SW Poland). The research investigated the geochemical processes and isotopic interactions in the water column as well as those between the water column [...] Read more.
The aim of this study was a recognition of the carbon cycle in a small anthropogenic reservoir located in Wrocław (SW Poland). The research investigated the geochemical processes and isotopic interactions in the water column as well as those between the water column and the sediment. Moreover, an attempt was made to identify the sources of carbon in the studied water body. Observations of temporal and spatial (vertical and horizontal) geochemical trends were the subject of this research. Chemical and isotopic analyses were the main tool used in this study. A total of 49 samples of water, sediment and plants were prepared, with sampling carried out in the period from October 2015 to May 2017. Two periods: autumn and spring were chosen for the study. During the autumn cycle, smaller variations in the values of δ13C in DIC were found compared to the spring cycle. The enrichment of dissolved inorganic carbon (DIC) in the heavy isotope during the spring period was caused by the dynamic growth of microorganisms. The process of assimilative reduction of dissolved inorganic carbon by aquatic organisms, which use inorganic carbon in biochemical reactions, occurred in the reservoir. This process led to an enrichment of DIC in the 13C isotope. The analysis of the sedimentary organic carbon revealed a greater enrichment in the heavy isotope of carbon (by about 3‰) in April compared to May. This is due to the growth of microorganisms responsible for degradation of sedimentary organic matter and plant detritus. The sediment and the water column were shown to interact through the exchange of carbon. Full article
Previous Issue
Next Issue
Back to TopTop