Thau Observer for Insulin Estimation Considering the Effect of Beta-Cell Dynamics for a Diabetes Mellitus Model
Abstract
:1. Introduction
2. ODE Model
3. Materials and Methods
3.1. Mathematical Preliminaries
- Define the nonlinear system. Represent the system with a set of ODEs in the following form:
- Let be a differentiable function such that h is not the first integral of the system (2); therefore, the function is used as a solution to the problem of localization of all compact invariant sets and is called the localizing function. Let be the restriction of h to a set
- If the localization is set and all compact invariant sets are considered inside the domain , then the localization set is valid, with defined in Theorem 1. Let Q be a subset of . Then, the following theorem applies:
- 4.
- A refinement of the localization set is achieved with the help of the iterative theorem, which is stated as follows:
- 5.
- The mathematical expression corresponds to the theorem defined in [25], known as the iterative theorem, which is described as follows:
- The advantage of this methodology lies in the fact that it can generate upper or lower bounds by combining several localizing functions. There is no limit to the number of localizing functions that can be combined to obtain a higher upper bound or a smaller lower bound. These criteria depend on the specific research; the key aspect of the method is to obtain one upper or lower bound for each state variable that is part of the nonlinear system.
- 6.
- This section reviews valuable results from these works. First, it is assumed that all state variables are positive and located in the positive orthant, , giving biological meaning. Also, consider as the closed set :The solution to the problem of localizing the compact invariant sets is limited to the positive invariant compact sets; therefore, the goal is to find the maximum densities of each variable to define the region.
3.2. Analyzing the Nonlinear ODE Model of DM1
4. Nonlinear Observer
Thau Observer
5. Numerical Simulation and Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Febrian, M.E.; Ferdinan, F.X.; Sendani, G.P.; Suryanigrum, K.M.; Yunanda, R. Diabetes prediction using supervised machine learning. Procedia Comput. Sci. 2023, 216, 21–30. [Google Scholar] [CrossRef]
- Rooney, M.R.; Fang, M.; Ogurtsova, K.; Ozkan, B.; Echouffo-Tcheugui, J.B.; Boyko, E.J.; Magliano, D.J.; Selvin, E. Global prevalence of prediabetes. Diabetes Care 2023, 46, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Antar, S.A.; Ashour, N.A.; Sharaky, M.; Khattab, M.; Ashour, N.A.; Zaid, R.T.; Roh, E.J.; Elkamhawy, A.; Al-Karmalawy, A.A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023, 168, 115734. [Google Scholar] [CrossRef]
- Shaw, J.; Sicree, R.; Zimmet, P. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Vallis, M.; Ryan, H.; Berard, L.; Cosson, E.; Kristensen, F.B.; Levrat-Guillen, F.; Naiditch, N.; Rabasa-Lhoret, R.; Polonsky, W. How continuous glucose monitoring can motivate self-management: Can motivation follow behaviour? Can. J. Diabetes 2023, 47, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhou, J.; Cai, M. Multiple Physiological and Behavioural Parameters Identification for Dietary Monitoring Using Wearable Sensors: A Study Protocol. medRxiv 2024. [Google Scholar] [CrossRef]
- Lakshmanan, M. Nonlinear dynamics: Challenges and perspectives. Pramana 2005, 64, 617–632. [Google Scholar] [CrossRef]
- Aliffi, G.E.; Nastasi, G.; Romano, V.; Pitocco, D.; Rizzi, A.; Moore, E.J.; De Gaetano, A. A system of ODEs for representing trends of CGM signals. J. Math. Ind. 2024, 14, 23. [Google Scholar] [CrossRef]
- Savatorova, V. Exploring parameter sensitivity analysis in mathematical modeling with ordinary differential equations. CODEE J. 2023, 16, 4. [Google Scholar] [CrossRef]
- Bortz, D.M.; Messenger, D.A.; Dukic, V. Direct estimation of parameters in ODE models using WENDy: Weak-form estimation of nonlinear dynamics. Bull. Math. Biol. 2023, 85, 110. [Google Scholar] [CrossRef]
- Little, R.R.; Rohlfing, C.L.; Sacks, D.B. Status of hemoglobin A1c measurement and goals for improvement: From chaos to order for improving diabetes care. Clin. Chem. 2011, 57, 205–214. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Chen, W.; Lin, C.; Chen, T. Application of Van der Pol oscillator screening for peripheral arterial disease in patients with diabetes mellitus. J. Biomed. Sci. Eng. 2013, 6, 1143. [Google Scholar] [CrossRef]
- Liu, S.; Song, R.; Lu, X. Research on Blood Glucose Nonlinear Controller Based on Backstepping Adaptive Control Algorithm. In Proceedings of the 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), Kaifeng, China, 17–19 May 2024; pp. 472–477. [Google Scholar] [CrossRef]
- Shabestari, P.S.; Panahi, S.; Hatef, B.; Jafari, S.; Sprott, J.C. A new chaotic model for glucose-insulin regulatory system. Chaos Solitons Fractals 2018, 112, 44–51. [Google Scholar] [CrossRef]
- Singh, P.P.; Singh, K.M.; Roy, B.K. Chaos control in biological system using recursive backstepping sliding mode control. Eur. Phys. J. Spec. Top. 2018, 227, 731–746. [Google Scholar] [CrossRef]
- Saoussane, M.; Mohammed, T.; Mesaoud, C. Adaptive controller based an extended model of glucose-insulin-glucagon system for type 1 diabetes. Int. J. Model. Simul. 2023, 43, 282–293. [Google Scholar] [CrossRef]
- Mosquera-Lopez, C.; Jacobs, P.G. Digital twins and artificial intelligence in metabolic disease research. Trends Endocrinol. Metab. 2024, 35, 549–557. [Google Scholar] [CrossRef]
- Ackerman, E.; Rosevear, J.W.; McGuckin, W.F. A mathematical model of the glucose-tolerance test. Phys. Med. Biol. 1964, 9, 203. [Google Scholar] [CrossRef]
- Dalla Man, C.; Breton, M.D.; Cobelli, C. Physical activity into the meal glucose—Insulin model of type 1 diabetes: In silico studies. J. Diabetes Sci. Technol. 2009, 3, 56–67. [Google Scholar] [CrossRef]
- Vano, J.; Wildenberg, J.; Anderson, M.; Noel, J.; Sprott, J. Chaos in low-dimensional Lotka Volterra models of competition. Nonlinearity 2006, 19, 2391–2404. [Google Scholar] [CrossRef]
- Krishchenko, A.P. Estimations of domains with cycles. Comput. Math. Appl. 1997, 34, 2–4. [Google Scholar] [CrossRef]
- Krishchenko, A.P. Localization of invariant compact sets of dynamical systems. Differ. Equ. 2005, 41, 1669–1676. [Google Scholar] [CrossRef]
- Starkov, K.E.; Krishchenko, A.P. On the Dynamics of Immune-Tumor Conjugates in a Four-Dimensional Tumor Model. Mathematics 2024, 12, 843. [Google Scholar] [CrossRef]
- Krishchenko, A.P.; Starkov, K.E. Localization of compact invariant sets of the Lorenz system. Phys. Lett. A 2006, 353, 383–388. [Google Scholar] [CrossRef]
- Clermont, G.; Bartels, J.; Kumar, R.; Constantine, G.; Vodovotz, Y.; Chow, C. In silico design of clinical trials: A method coming of age. Crit. Care Med. 2004, 32, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Thau, F.E. Observing the state of non-linear dynamic systems. Int. J. Control 1973, 17, 471–479. [Google Scholar] [CrossRef]
- Besancon, G. Nonlinear Observers and Applications; Lecture notes in control and information sciences; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Bernard, O.; Sallet, G.; Sciandra, A. Nonlinear Observers for a Class of Biological Systems: Application to Validation of a Phytoplanktonic Growth Model. IEEE Trans. Autom. Control 1998, 43, 1056–1065. [Google Scholar] [CrossRef]
- Lillacci, G.; Khammash, M. Parameter Estimation and Model Selection in Computational Biology. PLoS Comput. Biol. 2010, 6, e1000696. [Google Scholar] [CrossRef]
- Aguilar-López, R.; Alvarado-Santos, E.; Thalasso, F.; López-Pérez, P.A. Monitoring Ethanol Fermentation in Real Time by a Robust State Observer for Uncertainties. Chem. Eng. Technol. 2024, 47, 779–790. [Google Scholar] [CrossRef]
- Bhatter, S.; Jangid, K.; Shyamsunder; Purohit, S.D. Determining glucose supply in blood using the incomplete I-function. Partial. Differ. Equ. Appl. Math. 2024, 10, 100729. [Google Scholar] [CrossRef]
- Hulhoven, X.; Wouwer, A.V.; Bogaerts, P. Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation. Chem. Eng. Sci. 2006, 61, 7151–7160. [Google Scholar] [CrossRef]
- Vaidyanathan, S. Nonlinear observer design for Lotka-Volterra systems. In Proceedings of the 2010 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 28–29 December 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Starkov, K.E.; Coria, L.N.; Aguilar, L.T. On synchronization of chaotic systems based on the Thau observer design. Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 17–25. [Google Scholar] [CrossRef]
- Olay-Blanco, A.; Rodriguez-Linan, A.; Quiroz, G. Parameter and State Estimation of a Mathematical Model of Carbohydrate Intake. IFAC-PapersOnLine 2018, 51, 73–78. [Google Scholar] [CrossRef]
- Xue, D.; Pan, F. Ordinary Differential Equation Solutions. In MATLAB® and Simulink® in Action: Programming, Scientific Computing and Simulation; Springer: Berlin/Heidelberg, Germany, 2024; pp. 283–321. [Google Scholar]
- Gamboa, D.; Coria, L.N.; Cárdenas Valdez, J.R.; Ramírez Villalobos, R.; Valle Trujillo, P.A. Implementación en hardware de un observador no lineal para un modelo matemático de Diabetes Mellitus Tipo 1 (DM1). Comput. Sist. 2019, 23, 1475–1486. [Google Scholar] [CrossRef]
- Hasan, M.R.; Alsaiari, A.A.; Fakhurji, B.Z.; Molla, M.H.R.; Asseri, A.H.; Sumon, M.A.A.; Park, M.N.; Ahammad, F.; Kim, B. Application of mathematical modeling and computational tools in the modern drug design and development process. Molecules 2022, 27, 4169. [Google Scholar] [CrossRef]
- Cappon, G.; Facchinetti, A. Digital Twins in Type 1 Diabetes: A Systematic Review. J. Diabetes Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Chan, P.Z.; Jin, E.; Jansson, M.; Chew, H.S.J. AI-Based Noninvasive Blood Glucose Monitoring: Scoping Review. J. Med. Internet Res. 2024, 26, e58892. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Indicates the normal decrease in concentration of insulin without glucose | ||
Indicates the rate of propagation of insulin with existence of glucose | ||
Indicate the increasing insulin rate once the concentration of glucose is raised | ||
Indicate the increasing insulin level rate independently excreted from different components by -cells | ||
Indicates the insulin effect on glucose | ||
Indicate the rate of decrease in glucose in response to excretion of insulin | ||
Indicates the normal increase of glucose without insulin | ||
Indicate the rate of decreasing the concentration of glucose due to insulin excreted by -cells | ||
Represent the rate of increase in -cells caused by the increase in glucose concentration | ||
Indicate the rate of decreasing -cells because of its existing level | ||
Density rate of insulin constant | ||
Density rate of glucose constant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamboa, D.; Galicia, T.C.; Campos, P.J. Thau Observer for Insulin Estimation Considering the Effect of Beta-Cell Dynamics for a Diabetes Mellitus Model. Math. Comput. Appl. 2025, 30, 43. https://doi.org/10.3390/mca30020043
Gamboa D, Galicia TC, Campos PJ. Thau Observer for Insulin Estimation Considering the Effect of Beta-Cell Dynamics for a Diabetes Mellitus Model. Mathematical and Computational Applications. 2025; 30(2):43. https://doi.org/10.3390/mca30020043
Chicago/Turabian StyleGamboa, Diana, Tonalli C. Galicia, and Paul J. Campos. 2025. "Thau Observer for Insulin Estimation Considering the Effect of Beta-Cell Dynamics for a Diabetes Mellitus Model" Mathematical and Computational Applications 30, no. 2: 43. https://doi.org/10.3390/mca30020043
APA StyleGamboa, D., Galicia, T. C., & Campos, P. J. (2025). Thau Observer for Insulin Estimation Considering the Effect of Beta-Cell Dynamics for a Diabetes Mellitus Model. Mathematical and Computational Applications, 30(2), 43. https://doi.org/10.3390/mca30020043