# Many-Objectives Optimization: A Machine Learning Approach for Reducing the Number of Objectives

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- can be applied independently on the type and the size of the data and the shape of the Pareto-optimal front,
- is independent from the choice/definition of the algorithm parameters,
- considers the relations DVs-DVs and objectives-objectives (and not only the relations between the DVs and objectives), and
- can provide explainable results for a DM that is a non-expert in optimization or machine learning.

## 2. Machine Learning Approach

#### 2.1. Concepts

#### 2.2. FS-OPA

_{i}. The elements d

_{ij}of the distance matrix correspond to a measure of dissimilarities between objects xi and x

_{j}, according to some given metric. The matrix is broken down into a tree, where the distance between any two objects (leaves) corresponds to the sum of the lengths of the branches connecting them. Finally, the third step merges objects strongly connected (according to the tree topology) into a community, generating a set of different similarity clusters.

#### 2.3. Comparison of FS-OPA with NL-MVU-PCA for MaOPs Data-Driven Structural Learning

^{3}) since n ⩽ l (as in leave-one-out resampling) [34]. Moreover, l = M in a space analysis only uses objectives. Thus, the time complexities of FS-OPA and NL-MVU-PCA have a ratio (n + M)/M

^{4}(l/q

^{3}) of running time for l = M in the worst case (in the usual case).

#### 2.4. FS-OPA Framework

- choose the objective(s) of the less distant clusters;
- choose one objective of the more distant (single) cluster;
- choose one objective from each of the remaining clusters.

- choose the objective(s) of the less distant clusters;
- choose one objective of the more distant (single) cluster;
- choose objective(s) from each of the remaining clusters taking into account, also, the phylogram and the knowledge of the DM(s) about the process.

## 3. Examples of Application: DTLZ Benchmark Problems

_{1}, f

_{2}, f

_{3}, f

_{4}, f

_{5}, f

_{6}, f

_{7}, f

_{8}, and f

_{9}are linearly correlated in DTLZ5). A random population of size 31 with samples normalized and Euclidian distance was used to obtain a distance matrix. SS procedure in Figure 3 was not applied. The output of Figure 5A shows variables and objectives arranged into a phylogram with leaf nodes (the objects under analysis) composing clusters (similarly to the end of the pipeline in Figure 1)—they are identified by the same color.

_{1}, …, f

_{9}are partitioned into three neighbor clusters ({f

_{1}, f

_{2}}, {f

_{3}, f

_{4}, f

_{5}, f

_{6}}, and {f

_{7}, f

_{8}, f

_{9}}) in the phylogram structure; while f

_{10}is together with the leaf nodes, corresponding to variables. The phylogram structure aggregates f

_{1}, …, and f

_{9}into the same subtree, while f

_{10}is isolated from the other objectives in the complementary subtree. The unique node with the label "100" (another type of result from a tree consensus) splits the phylogram into those two subtrees. Such a label (“100”) means that the leaf nodes f

_{10}and x

_{1}, ..., x

_{10}, and f

_{10}were in the same subtree (with the remaining leaf nodes in the complementary subtree) in 100% of all the constructed phylograms, independently of each subtree topology in a phylogram. Such an interpretation suggests a hypothesis: f

_{10}is weakly correlated to the other objectives, which are significantly associated with themselves. Thus, f

_{10}and one of the other objectives could compose an essential objective set; this result is consistent with the DTLZ5 problem structure.

_{11}, to generate samples outside POF, as samples used to construct a phylogram from Figure 5A. The phylogram from Figure 5B shows that f

_{10}is isolated in a subtree, while f

_{1}, …, f

_{9}are in the complementary subtrees. Such a result suggests that f

_{10}and f

_{1}(for example) would enable proper POF estimates; this result agrees with the DTLZ5(2,10) problem structure.

- DTLZ1: {f
_{1}}, {f_{2}, f_{3}, f_{4}, f_{5}}, {f_{6}, f_{7}, f_{8}}, {f_{9}} and {f_{10}}; - DTLZ2: {f
_{1}}, {f_{2}, f_{3}, f_{4}, f_{5}}, {f_{6}, f_{7}, f_{8}}, {f_{9}} and {f_{10}}; - DTLZ3: {f
_{1}}, {f_{2}, f_{3}, f_{4}}, {f_{5}, f_{6}, f_{7}, f_{8}}, {f_{9}} and {f_{10}}; - DTLZ4: {f
_{1}}, {f_{2}, f_{3}, f_{4}}, {f_{5}, f_{6}} and {f_{7}, f_{8}, f_{9}, f_{10}};

## 4. Polymer Extrusion Problem

#### 4.1. The Problem to Solve

_{m}is the melt density, k

_{m}is the melt thermal conductivity, h is the melting entropy, C

_{m}and C

_{s}are specific heat of melt and solids, respectively, T

_{m}is the melting temperature, η is the melt viscosity, T

_{so}and T

_{c}are the solids and the barrel temperatures, $\dot{\gamma}$ is the shear rate, T is the melt temperature in each node of the mesh, T

_{avg}is the average temperature of the melt, V

_{z}is the melt velocity in the Z direction, V

_{s}is the solid velocity in the y direction, and V

_{bx}is the barrel velocity in the X direction.

#### 4.2. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Deb, K. Multi-Objective Optimization using Evolutionary Algorithms; Wiley: Chichester, UK, 2001. [Google Scholar]
- Carlos, A.; Coello, C.; Gary, B.L.; David, A.V.V. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Boussaïd, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci.
**2013**, 237, 82–117. [Google Scholar] [CrossRef] - Bandaru, S.; Ng, A.H.C.; Deb, K. Data mining methods for knowledge discovery in multi-objective optimization: Part A—Survey. Expert Syst. Appl.
**2017**, 70, 139–159. [Google Scholar] [CrossRef] [Green Version] - Saxena, D.K.; Duro, J.A.; Tiwari, A.; Deb, K.; Zhang, Q. Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms. IEEE Trans. Evol. Comput.
**2013**, 17, 77–99. [Google Scholar] [CrossRef] - Brockhoff, D.; Zitzler, E. Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; pp. 533–542. [Google Scholar] [CrossRef]
- Brockhoff, D.; Zitzler, E. Objective Reduction in Evolutionary Multiobjective Optimization: Theory and Applications. Evol. Comput.
**2009**, 17, 135–166. [Google Scholar] [CrossRef] - López, J.A.; Coello, C.C.A.; Chakraborty, D. Objective reduction using a feature selection technique. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation—GECCO ’08, Atlanta, GA, USA, 12–16 July 2008. [Google Scholar] [CrossRef]
- Singh, H.K.; Isaacs, A.; Ray, T. A Pareto Corner Search Evolutionary Algorithm and Dimensionality Reduction in Many-Objective Optimization Problems. IEEE Trans. Evol. Comput.
**2011**, 15, 539–556. [Google Scholar] [CrossRef] - Deb, K.; Saxena, D.K. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In Proceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC’2006), Vancouver, BC, Canada, 16–21 July 2006; IEEE: Vancouver, BC, Canada, 2006; pp. 3353–3360. [Google Scholar]
- Saxena, D.K.; Deb, K. Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-Objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding. In Evolutionary Multi-Criterion Optimization; Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4403. [Google Scholar] [CrossRef]
- Duro, J.A.; Saxena, K.D.; Deb, K.; Zhang, Q. Machine learning based decision support for many-objective optimization problems. Neurocomputing
**2014**, 146, 30–47. [Google Scholar] [CrossRef] - Yuan, Y.; Ong, Y.-S.; Gupta, A.; Xu, H. Objective Reduction in Many-Objective Optimization: Evolutionary Multiobjective Approaches and Comprehensive Analysis. IEEE Trans. Evol. Comput.
**2018**, 22, 189–210. [Google Scholar] [CrossRef] - Gunduz, A.; Principe, J.C. Correntropy as a novel measure for nonlinearity tests. Signal Process.
**2009**, 89, 14–23. [Google Scholar] [CrossRef] - Sinha, A.; Saxena, D.K.; Deb, K.; Tiwari, A. Using objective reduction and interactive procedure to handle many-objective optimization problems. Appl. Soft Comput.
**2013**, 13, 415–427. [Google Scholar] [CrossRef] - Bandaru, S.; Ng, A.H.C.; Deb, K. Data mining methods for knowledge discovery in multi-objective optimization: Part B—New developments and applications. Expert Syst. Appl.
**2017**, 70, 119–138. [Google Scholar] [CrossRef] [Green Version] - Sanches, A.; Cardoso, J.M.; Delbem, A.C. Identifying merge-beneficial software kernels for hardware implementation. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 30 November–2 December 2011; pp. 74–79. [Google Scholar]
- Gholi Zadeh Kharrat, F.; Shydeo Brandão Miyoshi, N.; Cobre, J.; Mazzoncini De Azevedo-Marques, J.; Mazzoncini de Azevedo-Marques, P.; Cláudio Botazzo Delbem, A. Feature sensitivity criterion-based sampling strategy from the Optimization based on Phylogram Analysis (Fs-OPA) and Cox regression applied to mental disorder datasets. PLoS ONE
**2020**, 15, e0235147. [Google Scholar] [CrossRef] - Lui, L.T.; Terrazas, G.; Zenil, H.; Alexander, C.; Krasnogor, N. Complexity Measurement Based on Information Theory and Kolmogorov Complexity. Artif. Life
**2015**, 21, 205–224. [Google Scholar] [CrossRef] [PubMed] - Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.
**1987**, 4, 406–425. [Google Scholar] [PubMed] - Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E
**2004**, 69, 066133. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA
**2006**, 103, 8577–8582. [Google Scholar] [CrossRef] [Green Version] - Silva, B.D.A.; Cuminato, L.A.; Delbem, A.C.B.; Diniz, P.C.; Bonato, V. Application-oriented cache memorybconfiguration for energy efficiency in multi-cores. IET Comput. Digit. Tech.
**2015**, 9, 73–81. [Google Scholar] [CrossRef] - Silva, B.A.; Delbem, A.C.B.; Deniz, P.C.; Bonato, V. Runtime mapping and scheduling for energy efficiency in heterogeneous multi-core systems. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs, Mayan Riviera, Mexico, 7–9 December 2015; pp. 1–6. [Google Scholar]
- Martins, L.G.A.; Nobre, R.; Delbem, A.C.B.; Marques, E.; Cardoso, J.M.P. A clustering-based approach for exploring sequences of compiler optimizations. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 2436–2443. [Google Scholar] [CrossRef]
- Martins, L.G.; Nobre, R.; Delbem, A.C.; Marques, E.; Cardoso, J.M. Exploration of compiler optimization sequences using clustering-based selection. In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems, Edinburgh, UK, 11 December 2014; p. 63. [Google Scholar]
- Moro, L.F.S.; Lopes, A.M.Z.; Delbem, A.C.B.; Isotani, S. Os desafios para minerar dados educacionais de forma rápida e intuitiva: O caso da damicore e a caracterização de alunos em ambientes de elearning. In Proceedings of the XXXIII Congresso da Sociedade Brasileira de Computação, Workshop de Desafios da Computação Aplicada à Educação, Maceio, Brazil, 23–26 July 2013; pp. 1–10. [Google Scholar]
- Moro, L.F.; Rodriguez, C.L.; Andrade, F.R.H.; Delbem, A.C.B.; Isotani, S. Caracterização de Alunos em Ambientes de Ensino Online: Estendendo o Uso da DAMICORE para Minerar Dados Educacionais. An. Workshops CBIE
**2014**, 1–10. [Google Scholar] [CrossRef] [Green Version] - Ferreira, E.J.; Melo, V.V.; Delbem, A.C.B. Algoritmos de estimação de distribuição em mineração de dados: Diagnóstico do greening in citrus. In Proceedings of the II Escola Luso-Brasileira de Computação Evolutiva, Guimarães, Portugal, 11–14 July 2010. [Google Scholar]
- Martins, L.G.A.; Nobre, R.; Cardoso, J.A.M.P.; Delbem, A.C.B.; Marques, E. Clustering-based selection for the exploration of compiler optimization sequences. ACM Trans. Archit. Code Optim
**2016**, 13, 8:1–8:28. [Google Scholar] [CrossRef] [Green Version] - Mansour, M.R.; Alberto, L.F.C.; Ramos, R.A.; Delbem, A.C. Identifying groups of preventive controls for a set of critical contingencies in the context of voltage stability. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 453–456. [Google Scholar]
- Soares, A.; Râbelo, R.; Delbem, A. Optimization based on phylogram analysis. Expert Syst. Appl.
**2017**, 78, 32–50. [Google Scholar] [CrossRef] - Martins, J.P.; Delbem, A.C.B. Reproductive bias, linkage learning and diversity preservation in bi-objective evolutionary optimization. Swarm Evol. Comput.
**2019**, 48, 145–155. [Google Scholar] [CrossRef] - Goutsias, J.K. Mutually compatible Gibbs random fields. IEEE Trans. Inf. Theory
**1989**, 35, 1233–1249. [Google Scholar] [CrossRef] - Fonseca, C.M.; Guerreiro, A.P.; López-Ibáñez, M.; Paquete, L. On the Computation of the Empirical Attainment Function. In Proceedings of the 6th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2011), Ouro Preto, Brazil, 5–8 April 2011; Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6576. [Google Scholar] [CrossRef] [Green Version]
- Pearl, J.; Geiger, D.; Verma, T. Conditional independence and its representations. Kybernetika
**1989**, 25, 33–44. [Google Scholar] - Zhen, L.; Li, M.; Cheng, R.; Peng, D.; Yao, X. Multiobjective test problems with degenerate Pareto fronts. arXiv
**2018**, arXiv:1806.02706. [Google Scholar] - Gaspar-Cunha, A. Modelling and Optimisation of Single Screw Extrusion Using Multi-Objective Evolutionary Algorithms, 1st ed.; Lambert Academic Publishing: London, UK, 2009. [Google Scholar]
- Gaspar-Cunha, A.; Covas, J.A. The Plasticating Sequence in Barrier Extrusion Screws Part I: Modeling. Polym. Eng. Sci.
**2014**, 54, 1791–1803. [Google Scholar] [CrossRef] - Gaspar-Cunha, A.; Covas, J.A. The Plasticating Sequence in Barrier Extrusion Screws Part II: Experimental Assessment. Polym. Plast. Technol. Eng.
**2014**, 53, 1456–1466. [Google Scholar] [CrossRef] - Gaspar-Cunha, A.; Monaco, F.; Sikora, J.; Delbem, A. Artificial intelligence in single screw polymer extrusion: Learning from computational data. Eng. Appl. Artif. Intell.
**2022**, 116, 105397. [Google Scholar] [CrossRef] - Hisao, I.; Hiroyuki, M.; Yuki, T.; Yusuke, N. Modified distance. In Evolutionary Multi-Criterion Optimization; Gaspar-Cunha, A., Antunes, C.H., Coello Coello, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 110–125. [Google Scholar]
- Fonseca, C.M.; Paquete, L.; López-Ibáñez, M. An improved dimension sweep algorithm for the hypervolume indicator. In Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, 16–21 July 2006; pp. 1157–1163. [Google Scholar] [CrossRef]
- Pymoo: Multi-objective Optimization in Python. Available online: https://pymoo.org/misc/indicators.html#nb-hv (accessed on 5 November 2022).

**Figure 1.**The tree-steps of the pipeline DAMICORE (reproduced from [18]).

**Figure 3.**SS procedure that obtains the selected samples is shown in Figure 2.

**Figure 5.**Phylogram and the clusters found: (

**A**) for unconstrained DTLZ5 with 10 objectives and (

**B**) for constrained DTLZ5 (2,10).

**Figure 7.**Single screw extrusion: (

**A**) plasticating phases; (

**B**) melting mechanism in CS (left) and MBS (right); (

**C**) specific system geometry used in the calculations.

**Figure 8.**Phylograms for Cases 1 and 4 (Table 3).

**Figure 9.**Pareto-optimal fronts after 100 generations for the pair of objectives identified in Figure 8 for Case 1.

**Figure 10.**Pareto-optimal fronts after 100 generations for the pair of objectives identified in Figure 8 for Case 7.

**Table 1.**NL-MVU-PCA and FS-OPA for multidimensional data-driven structural learning applied to real-world MaOPs.

Category | Types | NL-MVU-PCA | FS-OPA | |
---|---|---|---|---|

Analyses | Objective-objective | X | X | |

Variable-variable | X | |||

Variable-objective | X | |||

Objective space reduction | X | |||

Sensitivity | X | |||

Priors | Kernel function usage | X | Not necessary | |

Parameter optimization | X ^{#} | Not necessary | ||

Variable andobjectiverepresentation | Continuous | X | X | |

Discrete (integers, real intervals) | X | X | ||

Ordinal | X | X | ||

Nominal | X | X | ||

Mixed | X | |||

Explainability | Implicit | X | ||

Explicit (The Why) | X | |||

User-friendliness | Stakeholders can easily run FS-OPA and understand results even for a large number of variables and/or objectives | X | ||

Scalability | Time-complexity | Usual cases | O(M^{3}q^{3}) * | O(l^{3}) ** |

The worst case | O(M^{6}) | O(nl^{2} + l^{3}) | ||

Sample-size support | Empirical | Theoretical and empirical |

^{#}Reference [5] shows that one can avoid parameter optimization for a new problem by choosing q = M − 1 for NL-MVU-PCA.

Objectives | Aim | x_{min} | x_{max} |
---|---|---|---|

Output—Q (kg/hr) | Maximize | 1 | 20 |

Length for melting—L (m) | Minimize | 0.1 | 0.9 |

Melt temperature—T (°C) | Minimize | 150 | 210 |

Power consumption—Power (W) | Minimize | 0 | 9200 |

WATS | Maximize | 0 | 1300 |

Viscous dissipation—Viscous | Minimize | 0.9 | 1.2 |

Case | Operating Conditions | Decision Variables | ||||
---|---|---|---|---|---|---|

N (rpm) | Tb1 (°C) | Tb2 (°C) | Tb3 (°C) | Geometry | ||

1 | Constant | 40 | 140 | 150 | 160 | Table 4 |

2 | Constant | 60 | 140 | 150 | 160 | Table 4 |

3 | Constant | 80 | 140 | 150 | 160 | Table 4 |

4 | Variable | [40, 80] | [140, 160] | [150, 170] | [160, 200] | Table 4 |

Screw Type | Decision Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|

CS | case | L1 | L2 | H1 | H3 | P | e | ||

MBS | L1_ | L2_ | H1_ | H3_ | P_ | e_ | Hf | wf | |

Interval | [0, 1] | [100, 400] | [170, 400] | [18, 22] | [22, 26] | [25, 35] | [3, 4] | [0.1, 0.6] | [3, 4] |

‘Q’ | ‘L’ | ‘T’ | ‘Power’ | ‘WATS’ | ‘TTb’ | Average | |
---|---|---|---|---|---|---|---|

‘Q’ | 0.00 | 0.07 | 0.73 | 0.27 | 0.27 | 0.73 | 0.345 |

‘L’ | 0.07 | 0.00 | 0.73 | 0.27 | 0.27 | 0.73 | 0.345 |

‘T’ | 0.73 | 0.73 | 0.00 | 0.67 | 0.67 | 0.07 | 0.478 |

‘Power’ | 0.27 | 0.27 | 0.67 | 0.00 | 0.07 | 0.67 | 0.325 |

‘WATS’ | 0.27 | 0.27 | 0.67 | 0.07 | 0.00 | 0.67 | 0.325 |

‘TTb’ | 0.73 | 0.73 | 0.07 | 0.67 | 0.67 | 0.00 | 0.478 |

‘Q’ | ‘L’ | ‘T’ | ‘Power’ | ‘WATS’ | ‘TTb’ | Average | |
---|---|---|---|---|---|---|---|

‘Q’ | 0.00 | 0.08 | 1.00 | 0.42 | 0.42 | 1.00 | 0.480 |

‘L’ | 0.08 | 0.00 | 1.00 | 0.42 | 0.42 | 1.00 | 0.480 |

‘T’ | 1.00 | 1.00 | 0.00 | 0.83 | 0.83 | 0.08 | 0.620 |

‘Power’ | 0.42 | 0.42 | 0.83 | 0.00 | 0.08 | 0.83 | 0.430 |

‘WATS’ | 0.42 | 0.42 | 0.83 | 0.08 | 0.00 | 0.83 | 0.430 |

‘TTb’ | 1.00 | 1.00 | 0.08 | 0.83 | 0.83 | 0.00 | 0.620 |

**Table 7.**Performance comparison using Hypervolume and IGD for the total number of objectives and the automatic reduction to four and three objectives (between brackets the standard deviation, and loss percentage relative to six objectives) for the four cases studied.

Case Study | Metric | 6 Objectives | 4 Objectives (Q, Power, WATS, T) | 3 Objectives (Q, WATS, T) |
---|---|---|---|---|

1 | HV | 0.21518 (0.008145) | 0.19148 (0.012324) −11.0% | 0.02555 (0.024707) −88.1% |

IGD | 0.10966 (0.004972) | 0.11159 (0.003607) −1.76% | 0.66727 (0.143866) −508% | |

2 | HV | 0.23233 (0.013760) | 0.20867 (0.010411) −10.2% | 0.04689 (0.028991) −79.8% |

IGD | 0.10966 (0.004972) | 0.11205 (0.003526) −2.17% | 0.69042 (0.105262) −529% | |

3 | HV | 0.24809 (0.006384) | 0.21932 (0.014301) −11.6% | 0.04598 (0.0285391) −81.5% |

IGD | 0.11076 (0.005756) | 0.11326 (0.006315) −2.25% | 0.69042 (0.105262) −523% | |

4 | HV | 0.24809 (0.006384) | 0.22911 (0.009955) −7.7% | 0.01967 (0.011256) −92.1% |

IGD | 0.11076 (0.005756) | 0.11431 (0.007949) −3.21% | 0.72078 (0.046369) −550% |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gaspar-Cunha, A.; Costa, P.; Monaco, F.; Delbem, A.
Many-Objectives Optimization: A Machine Learning Approach for Reducing the Number of Objectives. *Math. Comput. Appl.* **2023**, *28*, 17.
https://doi.org/10.3390/mca28010017

**AMA Style**

Gaspar-Cunha A, Costa P, Monaco F, Delbem A.
Many-Objectives Optimization: A Machine Learning Approach for Reducing the Number of Objectives. *Mathematical and Computational Applications*. 2023; 28(1):17.
https://doi.org/10.3390/mca28010017

**Chicago/Turabian Style**

Gaspar-Cunha, António, Paulo Costa, Francisco Monaco, and Alexandre Delbem.
2023. "Many-Objectives Optimization: A Machine Learning Approach for Reducing the Number of Objectives" *Mathematical and Computational Applications* 28, no. 1: 17.
https://doi.org/10.3390/mca28010017