Certified Motorcycle Helmets: Computational Evaluation of the Efficacy of Standard Requirements with Finite Element Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Motorcycle Helmet Model
2.1.1. Numerical Modeling
2.1.2. Material Modeling
is the pressure; | |
is the von Mises stress; | |
is the deviatoric stress and I is the identity matrix; | |
is the size of the (vertical) q-axis of the yield ellipse; | |
is the size of the (horizontal) p-axis of the yield ellipse; | |
is the shape factor of the yield ellipse; | |
is the center of the yield ellipse on the p-axis; | |
is the yield stress in hydrostatic compression (always positive); | |
is the strength of the material in hydrostatic tension. |
2.1.3. Acceleration Curves
2.2. Injury Risk Evaluation
YEAHM
3. Results
3.1. Impact Point B
3.2. Impact Point P
3.3. Impact Point R
3.4. Impact Point X
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety. 2018. Available online: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ (accessed on 13 February 2020).
- EPSR. Road Fatality Statistics in the EU (Infographic). Available online: https://www.europarl.europa.eu/news/en/headlines/society/20190410STO36615/road-fatality-statistics-in-the-eu-infographic (accessed on 13 February 2020).
- United Nations. ECE Regulation 22.05—Uniform Provision Concerning the Approval of Protective Helmets and Their Visors for Driver and Passengers of Motor Cycles and Mopeds. Available online: www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r022r4e.pdf (accessed on 13 February 2020).
- Fernandes, F.A.O.; Alves de Sousa, R.J. Head injury predictors in sports trauma—A state-of-the-art review. J. Eng. Med. 2015, 229, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Bellora, A.; Krauss, R.; van Poolen, L. Meeting Interior Head Impact Requirements: A Basic Scientific Approach. SAE Trans. 2001, 110, 383–408. [Google Scholar]
- Kleiven, S. Influence of Impact Direction to the Human Head in Prediction of Subdural Hematoma. J. Neurotrauma 2003, 20, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Kleiven, S. Influence of direction and duration of impacts to the human head evaluated using the finite element method. In Proceedings of the IRCOBI Conference, Prague, Czech Republic, 21–23 September 2005; pp. 41–57. [Google Scholar]
- Feist, F.; Gugler, J.; Arregui-Dalmases, C.; del Pozo de Dios, E.; Lopez-Valdes, F.; Deck, D.; Willinger, R. Pedestrian collisions with flat-fronted vehicles: Injury patterns and importance of rotational accelerators as a predictor for traumatic brain injury (TBI). In Proceedings of the 21st International Conference on the Enhanced Safety of Vehicles, Stuttgart, Germany, 15–18 June 2009; pp. 1–19. [Google Scholar]
- Fenner, H., Jr.; Thomas, D.J.; Gennarelli, T.; Pintar, F.A.; Becker, E.B.; Newman, J.A.; Yoganandan, N. Final Report of Workshop on Criteria for Head Injury and Helmet Standards; Department of Neurosurgery, Medical College of Wisconsin: Milwaukee, WI, USA, 2005. [Google Scholar]
- Kim, G.H.; Lee, O.S.; Yoo, S.S. Experimental study on impact absorbing performance of motorcycle helmets. KSME Int. J. 1997, 11, 292–299. [Google Scholar] [CrossRef]
- Kleiven, S.; von Holst, H. Consequences of head size following trauma to the human head. J. Biomech. 2002, 35, 153–160. [Google Scholar] [CrossRef]
- Newman, J.A. Head injury criteria in automotive crash testing. SAE Tech. Pap. 1980. [Google Scholar] [CrossRef]
- Newman, J. On the Use of the Head Injury Criterion (HIC) in Protective Headgear Evaluation. SAE Tech. Pap. 1975. [Google Scholar] [CrossRef]
- Johnson, G.I. Investigations on impact testing of head injury protection helmets. Int. J. Crashworthiness 2000, 5, 491–502. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, S. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles. Biomech. Model. Mechanobiol. 2017, 16, 449–461. [Google Scholar] [CrossRef]
- Aare, M.; Kleiven, S.; Halldin, P. Injury tolerances for oblique impact helmet testing. Int. J. Crashworthiness 2004, 9, 15–23. [Google Scholar] [CrossRef]
- King, A.; Yang, K.; Zhang, L.; Hardy, W.; Viano, D. Is head injury caused by linear or angular acceleration? In Proceedings of the IRCOBI Conference, Lisbon, Portugal, 25–26 September 2003; pp. 1–10. [Google Scholar]
- Gennarelli, T.A. Head injury in man and experimental animals: Clinical aspects. Acta Neurochir. Suppl. 1983, 32, 1–13. [Google Scholar] [PubMed]
- Margulies, S.S.; Thibault, L.E. A proposed tolerance criterion for diffuse axonal injury in man. J. Biomech. 1992, 25, 917–923. [Google Scholar] [CrossRef]
- Newman, J. The biomechanics of head trauma and the development of the modern helmet. How far have we really come? In Proceedings of the IRCOBI Conference, Prague, Czech Republic, 21–23 September 2005. [Google Scholar]
- Pratellesi, A.; Turrin, S.; Haag, T.; Scippa, A.; Baldanzini, N. On the effect of testing uncertainties in the homologation tests of motorcycle helmets according to ECE 22.05. Int. J. Crashworthiness 2011, 16, 523–536. [Google Scholar] [CrossRef]
- Shuaeib, F.M.; Hamouda, A.M.S.; Radin Umar, R.S.; Hamdan, M.M.; Hasmi, M.S.J. Motorcycle helmet part I. Biomechanics and computational issues. J. Mater. Process. Technol. 2002, 123, 406–421. [Google Scholar] [CrossRef]
- Tinard, V.; Deck, C.; Willinger, R. New methodology for improvement of helmet performance during impacts with regards to biomechanical criteria. Mater. Des. 2012, 37, 79–88. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; Alves de Sousa, R.J.; Willinger, W.; Deck, C. Finite Element Analysis of Helmeted Impacts and Head Injury Evaluation with a Commercial Road Helmet. In Proceedings of the IRCOBI Conference, Gothenburg, Sweden, 11–13 September 2013; pp. 431–442. [Google Scholar]
- Schmitt, K.U.; Niederer, P.F.; Cronin, D.S.; Morrison, B., III; Muser, M.H.; Walz, F. Head Injuries. In Trauma Biomechanics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Aare, M.; Kleiven, S.; Halldin, P. Injury criteria for oblique helmet impacts. In Proceedings of the IRCOBI Conference, Lisbon, Portugal, 25–26 September 2003; pp. 349–350. [Google Scholar]
- Deck, C.; Baumgartner, B.; Willinger, R. Helmet Optimisation on head-helmet modelling. Struct. Mater. 2003, 13, 319–328. [Google Scholar]
- Forero Rueda, M.A.; Cui, L.; Gilchrist, M.D. Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner. Mater. Des. 2009, 30, 3405–3413. [Google Scholar] [CrossRef]
- Kleiven, S. A parametric study of energy absorbing foams for head injury prevention. In Proceedings of the 20th International Technical Conference on the Enhanced Safety of Vehicles Conference, Lyon, France, 18–21 June 2007. [Google Scholar]
- Prasartthong, N.; Koetniyom, S.; Carmai, J. Development of Motorcycle Helmet for Pre-school Children Using Metal Foam. In Proceedings of the 9th Thai Society of Mechanical Engineers, International Conference on Mechanical Engineering, Phuket, Thailand, 11–14 December 2018. [Google Scholar]
- Han, Y.; He, W.; Shi, L.; Wu, H.; Pan, D.; Huang, H. Helmet protective performance via reconstruction of electric two-wheeler rider’s head-to-ground impact accidents. Int. J. Crashworthiness 2019. [Google Scholar] [CrossRef]
- Hynčík, L.; Bońkowski, T.; Lv, W. Development of a simple motorcyclist helmet finite element model. Int. J. Veh. Saf. 2018, 10, 277–287. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; Alves de Sousa, R.J. Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet. Struct. Eng. Mech. 2013, 48, 661–679. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; Alves de Sousa, R.J.; Ptak, M.; Migueis, G. Helmet Design Based on the Optimization of Biocomposite Energy-Absorbing Liners under Multi-Impact Loading. Appl. Sci. 2019, 9, 735. [Google Scholar] [CrossRef]
- Cui, L.; Forero Rueda, M.A.; Gilchrist, M.D. Optimisation of energy absorbing liner for equestrian helmets. Part II: Functionally graded foam liner. Mater. Des. 2009, 30, 3414–3419. [Google Scholar] [CrossRef]
- Mills, N.J.; Gilchrist, A. Motorcycle helmet shell optimisation. In Proceedings of the Association for Advancement of Automotive Medicine Conference, Portland, OR, USA, 5–7 October 1992; pp. 149–162. [Google Scholar]
- Pinnoji, P.K.; Mahajan, P. Impact analysis of helmets for improved ventilation with deformable head model. In Proceedings of the IRCOBI Conference, Madrid, Spain, 14–16 September 2006; pp. 159–170. [Google Scholar]
- Pinnoji, P.K.; Haider, Z.; Mahajan, P. Design of motorcycle helmets: Computational fluid and impact dynamics studies. Int. J. Crashworthiness 2008, 13, 265–278. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; Tchepel, D.; Alves de Sousa, R.J.; Ptak, M. Development and validation of a new finite element human head model: Yet Another Head Model (YEAHM). Eng. Comput. 2018, 35, 447–496. [Google Scholar] [CrossRef]
- Horgan, T.J.; Gilchrist, M.D. The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 2003, 8, 353–366. [Google Scholar] [CrossRef]
- Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. In Proceedings of the 51st Stapp Car Crash Conference, San Diego, CA, USA, 29–31 October 2007; pp. 81–114. [Google Scholar]
- Mao, H.; Zhang, L.; Jiang, B.; Genthikatti, V.V.; Jin, X.; Zhu, F.; Makwana, R.; Gill, A.; Jandir, G.; Singh, A.; et al. Development of a Finite Element Human Head Model Partially Validated with Thirty Five Experimental Cases. J. Biomech. Eng. 2013, 135, 111002. [Google Scholar] [CrossRef]
- Sahoo, D.; Deck, C.; Willinger, R. Brain injury tolerance limit based on computation of axonal strain. Accid. Anal. Prev. 2016, 92, 53–70. [Google Scholar] [CrossRef]
- Takhounts, E.G.; Ridella, S.A.; Hasija, V.; Tannous, R.E.; Campbell, J.Q.; Malone, D.; Danelson, K.; Stitzel, J.; Rowson, S.; Duma, S. Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model. Stapp Car Crash J. 2008, 52, 1–31. [Google Scholar]
- Zhang, L.; Yang, K.H.; King, A.I. Comparison of brain responses between frontal and lateral impacts by finite element modelling. J. Neurotrauma 2001, 18, 21–30. [Google Scholar] [CrossRef]
- Khanuja, T.; Unni, H.N. Intracranial pressure-based validation and analysis of traumatic brain injury using a new three-dimensional finite element human head model. Proc. Inst. Mech. Eng. H 2020, 234, 3–15. [Google Scholar] [CrossRef]
- Saboori, P.; Walker, G. Brain Injury and Impact Characteristics. Ann. Biomed. Eng. 2019, 47, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Giudice, J.S.; Zeng, W.; Wu, T.; Alshareef, A.; Shedd, D.F.; Panzer, M.B. An Analytical Review of the Numerical Methods Used for Finite Element Modeling of Traumatic Brain Injury. Ann. Biomed. Eng. 2019, 47, 1855–1872. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Wang, F.; Wang, B.; Li, L.; Li, F. A Computational Biomechanics Human Body Model Coupling Finite Element and Multibody Segments for Assessment of Head/Brain Injuries in Car-To-Pedestrian Collisions. Int. J. Environ. Res. Public Health 2020, 17, 492. [Google Scholar] [CrossRef] [PubMed]
- Migueis, G.; Fernandes, F.A.O.; Ptak, M.; Ratajczak, M.; Alves de Sousa, R.J. Detection of bridging veins rupture and subdural haematoma onset using a finite element head model. Clin. Biomech. 2019, 63, 104–111. [Google Scholar] [CrossRef]
- Toma, M.; Nguyen, P.D.H. Coup-contrecoup brain injury: Fluid-structure interaction simulations. Int. J. Crashworthiness 2019. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; Alves de Sousa, R.J.; Ptak, M. Head Injury Simulation in Road Traffic Accidents; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Brands, D.W.A.; Thunnissen, J.G.M.; Wismans, J.S.H.M. Modelling head injury countermeasures: A 3D helmet model. In Proceedings of the AGARD Meeting on Impact Head Injury, Mescalero, NM, USA, 7–9 November 1996. [Google Scholar]
- Pinnoji, P.K.; Mahajan, P. Analysis of impact-induced damage and delamination in the composite shell of a helmet. Mater. Des. 2010, 31, 3716–3723. [Google Scholar] [CrossRef]
- Cernicchi, A.; Galvanetto, U.; Iannucci, L. Virtual modelling of safety helmets: Practical problems. Int. J. Crashworthiness 2008, 13, 451–467. [Google Scholar] [CrossRef]
- Tinard, V.; Deck, C.; Willinger, R. Modelling and validation of motorcyclist helmet with composite shell. Int. J. Crashworthiness 2012, 17, 209–215. [Google Scholar] [CrossRef]
- Shuaeib, F.M.; Hamouda, A.M.S.; Hamdan, M.M.; Radin Umar, R.S.; Hashmi, M.S.J. Motorcycle helmet: Part II, Materials and design issues. J. Mater. Process. Technol. 2002, 123, 422–431. [Google Scholar] [CrossRef]
- Vallée, H.; Hartemann, F.; Thomas, C.; Tarriére, C.; Patel, A.; Got, C. The fracturing of helmet shells. In Proceedings of the IRCOBI Conference, Delft, The Netherlands, 4–6 September 1984; pp. 99–109. [Google Scholar]
- Mills, N.J.; Wilkes, S.; Derler, S.; Flisch, A. FEA of oblique impact tests on a motorcycle helmet. Int. J. Impact Eng. 2009, 36, 913–925. [Google Scholar] [CrossRef]
- ABAQUS 6. 10 Documentation; Hibbitt, Karlsson & Sorensen, Inc.: New York, NY, USA, 2010. [Google Scholar]
- Fernandes, F.A.O.; Jardin, R.T.; Pereira, A.B.; Alves de Sousa, R.J. Comparing the mechanical performance of synthetic and natural cellular materials. Mater. Des. 2015, 82, 335–341. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; Alves de Sousa, R.J. Motorcycle helmets—A state-of-the-art review. Accid. Anal. Prev. 2013, 56, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, H.; Pang, T.Y.; Perret-Ellena, T.; Subic, A. Finite element bicycle helmet models development. Procedia Technol. 2015, 20, 91–97. [Google Scholar] [CrossRef][Green Version]
- Mordaka, J.; Kleiven, S.; van Schijndel de Nooij, M.; de Lange, R.; Casanova, L.J.G.; Carter, E.L.; von Holst, H. The importance of rotational kinematics in pedestrian head to windshield impacts. In Proceedings of the IRCOBI Conference, Maastricht, The Netherlands, 19–21 September 2007; pp. 83–94. [Google Scholar]
- Hardy, W.N.; Foster, C.D.; Mason, M.J.; King, K.H.; King, A.I.; Tashman, S. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 2001, 45, 337–368. [Google Scholar] [PubMed]
- Miller, K.; Chinzei, K. Mechanical properties of brain tissue in tension. J. Biomech. 2002, 35, 483–490. [Google Scholar] [CrossRef]
- Ogden, R.W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubber like solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972, 326, 565–584. [Google Scholar]
- Rashid, B.; Destrade, M.; Gilchrist, M.D. Mechanical characterization of brain tissue in compression at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 2012, 10, 23–38. [Google Scholar] [CrossRef]
- Rashid, B.; Destrade, M.; Gilchrist, M.D. Hyperelastic and viscoelastic properties of brain tissue in tension. In Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, Houston, TX, USA, 9–15 November 2012; pp. 9–15. [Google Scholar]
- Gilchrist, M.D. Modelling and Accident Reconstruction of Head Impact Injuries. Key Eng. Mater. 2003, 245, 417–432. [Google Scholar] [CrossRef]
- Nahum, A.M.; Smith, R.; Ward, C.C. Intracranial pressure dynamics during head impact. In Proceedings of the 21st Stapp Car Crash Conference, New Orleans, LA, USA, 19–21 October 1977; pp. 339–366. [Google Scholar]
- Wright, R.M.; Ramesh, K.T. An axonal strain injury criterion for traumatic brain injury. Biomech. Model. Mechanobiol. 2012, 11, 245–260. [Google Scholar] [CrossRef]
- Bain, B.C.; Meaney, D.F. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 2000, 122, 615–622. [Google Scholar] [CrossRef]
- Bandak, F.A.; Zhang, A.X.; Tannous, R.E.; DiMasi, F.; Masiello, P.; Eppinger, R. SIMon: A simulated injury monitor: Application to head injury assessment. In Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles, Amsterdam, The Netherlands, 4–7 June 2001. [Google Scholar]
- Zhang, L.; Yang, K.; King, A. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 2004, 126, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Marjoux, D.; Baumgartner, D.; Deck, C.; Willinger, R. Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 2008, 40, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Deck, C.; Willinger, R. Head injury prediction tool for predictive systems optimization. In Proceedings of the 7th European LS-DYNA Conference, Salzburg, Austria, 14–15 May 2009. [Google Scholar]
Mass [kg] | [kg cm2] | [kg cm2] | [kg cm2] |
---|---|---|---|
5.6 | 370 | 440 | 300 |
Part | Element Type (Abaqus) | N. of Elements | N. of Nodes |
---|---|---|---|
Shell | Four-node linear shell (S4) | 11,954 | 12,310 |
Liner | Four-node linear tetrahedron (C3D4) | 109,872 | 24,545 |
Headform | Rigid quadrangular shell (R3D4) | 1346 | 1348 |
Anvil | 4 | 9 |
[kg/m3] | [MPa] | [MPa−1] | [s] | [s] | |||
---|---|---|---|---|---|---|---|
1040 | 0.012 | 5.0507 | 0.04 | 0.5837 | 0.2387 | 0.02571 | 0.02570 |
[kg/m3] | [MPa] | [MPa] | [MPa−1] |
---|---|---|---|
1000 | 0.9 | 1 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, F.A.O.; Alves de Sousa, R.J.; Ptak, M.; Wilhelm, J. Certified Motorcycle Helmets: Computational Evaluation of the Efficacy of Standard Requirements with Finite Element Models. Math. Comput. Appl. 2020, 25, 12. https://doi.org/10.3390/mca25010012
Fernandes FAO, Alves de Sousa RJ, Ptak M, Wilhelm J. Certified Motorcycle Helmets: Computational Evaluation of the Efficacy of Standard Requirements with Finite Element Models. Mathematical and Computational Applications. 2020; 25(1):12. https://doi.org/10.3390/mca25010012
Chicago/Turabian StyleFernandes, Fábio A. O., Ricardo J. Alves de Sousa, Mariusz Ptak, and Johannes Wilhelm. 2020. "Certified Motorcycle Helmets: Computational Evaluation of the Efficacy of Standard Requirements with Finite Element Models" Mathematical and Computational Applications 25, no. 1: 12. https://doi.org/10.3390/mca25010012
APA StyleFernandes, F. A. O., Alves de Sousa, R. J., Ptak, M., & Wilhelm, J. (2020). Certified Motorcycle Helmets: Computational Evaluation of the Efficacy of Standard Requirements with Finite Element Models. Mathematical and Computational Applications, 25(1), 12. https://doi.org/10.3390/mca25010012