A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers
Abstract
:1. Introduction
2. A Unified Generalization of the Catalan and Other Numbers
3. A Product-Ratio Expression of the Fuss–Catalan–Qi Function
4. Integral Representations of the Fuss–Catalan–Qi Function
5. Properties of the Fuss–Catalan–Qi Function
- 1.
- if and , the function is increasing on ;
- 2.
- if and , the function is decreasing on ;
- 3.
- if and , the function has a unique minimum on ;
- 4.
- if and , the function has a unique maximum on ;
- 5.
- if and only if , the function is logarithmically completely monotonic of the second order on ; in particular, if and only if , the function is logarithmically convex on .
- if and , the first derivative is non-negative on ;
- if and , the first derivative has a unique zero, which is a minimum point of , on ;
- if and , the first derivative is non-positive on ;
- if and , the first derivative has a unique zero, which is a maximum point of , on .
6. Remarks
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koshy, T. Catalan Numbers with Applications; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Stanley, R.P. Catalan Numbers; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Stanley, R.P. Enumerative Combinatorics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics—A Foundation for Computer Science, 2nd ed.; Addison–Wesley Publishing Company: Reading, MA, USA, 1994. [Google Scholar]
- Vardi, I. Computational Recreations in Mathematica; Addison–Wesley: Redwood City, CA, USA, 1991. [Google Scholar]
- Qi, F.; Mahmoud, M.; Shi, X.-T.; Liu, F.-F. Some properties of the Catalan–Qi function related to the Catalan numbers. SpringerPlus 2016, 5, 1126. [Google Scholar] [CrossRef]
- Elezović, N. Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means. J. Math. Inequal. 2015, 9, 1001–1054. [Google Scholar] [CrossRef]
- Hilton, P.; Pedersen, J. Catalan numbers, their generalization, and their uses. Math. Intell. 1991, 13, 64–75. [Google Scholar] [CrossRef]
- Klarner, D.A. Correspondences between plane trees and binary sequences. J. Combin. Theory 1970, 9, 401–411. [Google Scholar] [CrossRef]
- Fuss, N.I. Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat. Nova Acta Acad. Sci. Imp. Petropolitanae 1791, 9, 243–251. [Google Scholar]
- Alexeev, N.; Götze, F.; Tikhomirov, A. Asymptotic distribution of singular values of powers of random matrices. Lith. Math. J. 2010, 50, 121–132. [Google Scholar] [CrossRef]
- Aval, J.-C. Multivariate Fuss–Catalan numbers. Discret. Math. 2008, 308, 4660–4669. [Google Scholar] [CrossRef]
- Gordon, I.G.; Griffeth, S. Catalan numbers for complex reflection groups. Am. J. Math. 2012, 134, 1491–1502. [Google Scholar] [CrossRef]
- Bisch, D.; Jones, V. Algebras associated to intermediate subfactors. Invent. Math. 1997, 128, 89–157. [Google Scholar]
- Lin, C.-H. Some combinatorial interpretations and applications of Fuss–Catalan numbers. ISRN Discret. Math. 2011, 2011, 534628. [Google Scholar] [CrossRef]
- Liu, D.-Z.; Song, C.-W.; Wang, Z.-D. On explicit probability densities associated with Fuss–Catalan numbers. Proc. Am. Math. Soc. 2011, 139, 3735–3738. [Google Scholar] [CrossRef]
- Młotkowski, W. Fuss–Catalan numbers in noncommutative probability. Doc. Math. 2010, 15, 939–955. [Google Scholar]
- Młotkowski, W.; Penson, K.A.; Zyczkowski, K. Densities of the Raney distributions. Doc. Math. 2013, 18, 1573–1596. [Google Scholar]
- Przytycki, J.H.; Sikora, A.S. Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers. J. Combin. Theory Ser. A 2000, 92, 68–76. [Google Scholar] [CrossRef]
- Stump, C. q,t-Fuß-Catalan numbers for complex reflection groups. In Proceedings of the 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Valparaiso, Chile, 23–27 June 2008; pp. 295–306. [Google Scholar]
- Stump, C. q,t-Fuß-Catalan numbers for finite reflection groups. J. Algebr. Combin. 2010, 32, 67–97. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Mahmoud, M.; Liu, F.-F. The Catalan numbers: A generalization, an exponential representation, and some properties. J. Comput. Anal. Appl. 2017, 23, 937–944. [Google Scholar]
- Qi, F.; Cerone, P. Some properties of the Fuss–Catalan numbers. Mathematics 2018, 6, 277. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Liu, F.-F. An integral representation, complete monotonicity, and inequalities of the Catalan numbers. Filomat 2018, 32, 575–587. [Google Scholar] [CrossRef]
- Liu, F.-F.; Shi, X.-T.; Qi, F. A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function. Glob. J. Math. Anal. 2015, 3, 140–144. [Google Scholar] [CrossRef]
- Mahmoud, M.; Qi, F. Three identities of the Catalan–Qi numbers. Mathematics 2016, 4, 35. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Logarithmically complete monotonicity of a function related to the Catalan–Qi function. Acta Univ. Sapientiae Math. 2016, 8, 93–102. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Logarithmically complete monotonicity of Catalan–Qi function related to Catalan numbers. Cogent Math. 2016, 3, 1179379. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Some properties and generalizations of the Catalan, Fuss, and Fuss–Catalan numbers. Mathematical Analysis and Applications: Selected Topics, 1st ed.; Ruzhansky, M., Dutta, H., Agarwal, R.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Chapter 5; pp. 101–133. [Google Scholar]
- Qi, F.; Shi, X.-T.; Liu, F.-F.; Kruchinin, D.V. Several formulas for special values of the Bell polynomials of the second kind and applications. J. Appl. Anal. Comput. 2017, 7, 857–871. [Google Scholar]
- Qi, F.; Shi, X.-T.; Mahmoud, M.; Liu, F.-F. Schur-convexity of the Catalan–Qi function related to the Catalan numbers. Tbilisi Math. J. 2016, 9, 141–150. [Google Scholar] [CrossRef]
- Shi, X.-T.; Liu, F.-F.; Qi, F. An integral representation of the Catalan numbers. Glob. J. Math. Anal. 2015, 3, 130–133. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Washington, DC, USA, 1972.
- Temme, N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions—Theory and Applications, 2nd ed.; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1941. [Google Scholar]
- Atanassov, R.D.; Tsoukrovski, U.V. Some properties of a class of logarithmically completely monotonic functions. Dokladi na Bolgarskata Akademiya na Naukite 1988, 41, 21–23. [Google Scholar]
- Qi, F.; Chen, C.-P. A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 2004, 296, 603–607. [Google Scholar] [CrossRef]
- Qi, F.; Guo, S.; Guo, B.-N. Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef]
- Qi, F.; Li, W.-H. A logarithmically completely monotonic function involving the ratio of gamma functions. J. Appl. Anal. Comput. 2015, 5, 626–634. [Google Scholar]
- Qi, F.; Luo, Q.-M.; Guo, B.-N. Complete monotonicity of a function involving the divided difference of digamma functions. Sci. China Math. 2013, 56, 2315–2325. [Google Scholar] [CrossRef]
- Qi, F.; Wei, C.-F.; Guo, B.-N. Complete monotonicity of a function involving the ratio of gamma functions and applications. Banach J. Math. Anal. 2012, 6, 35–44. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2010, 72, 21–30. [Google Scholar]
- Yin, L.; Qi, F. Several series identities involving the Catalan numbers. Trans. A. Razmadze Math. Inst. 2018, 172, 466–474. [Google Scholar] [CrossRef]
- Qi, F. An improper integral, the beta function, the Wallis ratio, and the Catalan numbers. Probl. Anal. Issues Anal. 2018, 7, 104–115. [Google Scholar] [CrossRef]
- Qi, F. Parametric integrals, the Catalan numbers, and the beta function. Elem. Math. 2017, 72, 103–110. [Google Scholar] [CrossRef]
- Qi, F. Some properties of the Catalan numbers. Ars Combin. 2022. in press. Available online: https://www.researchgate.net/publication/328891537 (accessed on 4 May 2019).
- Qi, F.; Akkurt, A.; Yildirim, H. Catalan numbers, k-gamma and k-beta functions, and parametric integrals. J. Comput. Anal. Appl. 2018, 25, 1036–1042. [Google Scholar]
- Qi, F.; Guo, B.-N. Integral representations of the Catalan numbers and their applications. Mathematics 2017, 5, 40. [Google Scholar] [CrossRef]
- Qi, F.; Zou, Q.; Guo, B.-N. Some identities and a matrix inverse related to the Chebyshev polynomials of the second kind and the Catalan numbers. Available online: https://doi.org/10.20944/preprints201703.0209.v2 (accessed on 4 May 2019).
- Zou, Q. Analogues of several identities and supercongruences for the Catalan–Qi numbers. J. Inequal. Spec. Funct. 2016, 7, 235–241. [Google Scholar]
- Zou, Q. The q-binomial inverse formula and a recurrence relation for the q-Catalan–Qi numbers. J. Math. Anal. 2017, 8, 176–182. [Google Scholar]
- Qi, F.; Shi, X.-T.; Cerone, P. A unified generalization of the Catalan, Fuss, Fuss–Catalan numbers and Catalan–Qi function. Available online: https://doi.org/10.13140/RG.2.1.3198.6000 (accessed on 4 May 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, F.; Shi, X.-T.; Cerone, P. A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers. Math. Comput. Appl. 2019, 24, 49. https://doi.org/10.3390/mca24020049
Qi F, Shi X-T, Cerone P. A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers. Mathematical and Computational Applications. 2019; 24(2):49. https://doi.org/10.3390/mca24020049
Chicago/Turabian StyleQi, Feng, Xiao-Ting Shi, and Pietro Cerone. 2019. "A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers" Mathematical and Computational Applications 24, no. 2: 49. https://doi.org/10.3390/mca24020049
APA StyleQi, F., Shi, X.-T., & Cerone, P. (2019). A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers. Mathematical and Computational Applications, 24(2), 49. https://doi.org/10.3390/mca24020049