# A Simple Spectral Observer

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Proposed Method

**Observability rank condition.**A system

## 3. Application Examples

#### 3.1. Example 1: A Simple Example

#### 3.2. Example 2: Reconstruction of Basic Signals

#### 3.3. Example 3: Edge Detection by Using the Fourier Coefficients

#### 3.4. Example 4: Fitting Complex Signal: The Bitcoin Price

#### 3.5. Example 5: Estimation of the Input Force on a Duffing Oscillator

## 4. Comparative Analysis Vis-à-Vis the STFT

## 5. Results and Discussion

## 6. Conclusions

## Author Contributions

## Conflicts of Interest

## Appendix A. MATLAB CODES

#### Appendix A.1. Symbolic Computation of Matrix A_{ω}

syms w tn=10; %Order of the Fourier Seriesfor k=1:2*n;Aw(k,k)=((-1)^((mod(k-1,4)-mod(k-1,2))/2))*w^(k-1);end

#### Appendix A.2. Symbolic Computation of Matrix A_{ω}

syms w tn=10; %Order of the Fourier Seriesfor k=1:nfor m=1:nAk(2*m-1,2*k-1)=k^(2*m-2);Ak(2*m,2*k)=k^(2*m-1);endend

#### Appendix A.3. Symbolic Computation of Matrix Ω

syms w tn=10; %Order of the Fourier Seriesfor k=1:nfor m=2:2*nO(1,(2*k)-1)=cos(k*w*t);O(1,(2*k))=sin(k*w*t);O(m,(2*k)-1)=diff(O(m-1,2*k-1),’t’);O(m,(2*k))=diff(O(m-1,2*k),’t’);endend

## References

- Hostetter, G.H. Recursive discrete Fourier transformation. IEEE Trans. Acoust. Speech Signal Proc.
**1980**, 28, 184–190. [Google Scholar] [CrossRef] - Bitmead, R.R.; Tsoi, A.C.; Parker, P.J. A Kalman filtering approach to short-time Fourier analysis. IEEE Trans. Acoust. Speech Signal Proc.
**1986**, 34, 1493–1501. [Google Scholar] [CrossRef] - Orosz, G.; Sujbert, L.; Peceli, G. Spectral observer with reduced information demand. In Proceedings of the 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008; pp. 2155–2160. [Google Scholar]
- Na, J.; Yang, J.; Wu, X.; Guo, Y. Robust adaptive parameter estimation of sinusoidal signals. Automatica
**2015**, 53, 376–384. [Google Scholar] [CrossRef] - Bitmead, R.R. On recursive discrete Fourier transformation. IEEE Trans. Acoust. Speech Signal Proc.
**1982**, 30, 319–322. [Google Scholar] [CrossRef] - Torres, L.; Gómez-Aguilar, J.; Jiménez, J.; Mendoza, E.; López-Estrada, F.; Escobar-Jiménez, R. Parameter identification of periodical signals: Application to measurement and analysis of ocean wave forces. Digit. Signal Proc.
**2017**, 69, 59–69. [Google Scholar] [CrossRef] - Dash, P.K.; Khincha, H. New algorithms for computer relaying for power transmission lines. Electr. Mach. Power Syst.
**1988**, 14, 163–178. [Google Scholar] [CrossRef] - Houmb, O.; Overvik, T. Some applications of maximum entropy spectral estimation to ocean waves and linear systems response in waves. Appl. Ocean Res.
**1981**, 3, 154–162. [Google Scholar] [CrossRef] - Blödt, M.; Chabert, M.; Regnier, J.; Faucher, J. Mechanical load fault detection in induction motors by stator current time-frequency analysis. IEEE Trans. Ind. Appl.
**2006**, 42, 1454–1463. [Google Scholar] [CrossRef] - Benbouzid, M.E.H.; Vieira, M.; Theys, C. Induction motors’ faults detection and localization using stator current advanced signal processing techniques. IEEE Trans. Power Electron.
**1999**, 14, 14–22. [Google Scholar] [CrossRef] - Busawon, K.; Farza, M.; Hammouri, H. A simple observer for a class of nonlinear systems. Appl. Math. Lett.
**1998**, 11, 27–31. [Google Scholar] [CrossRef] - Engelberg, S. Edge detection using Fourier coefficients. Am. Math. Mon.
**2008**, 115, 499–513. [Google Scholar] [CrossRef] - Liénard, A. Étude des oscillations entretenues. Revue Générale de l’Électricité
**1928**, 23, 901–912. [Google Scholar] - Torres, L.; Verde, C.; Vázquez-Hernández, O. Parameter identification of marine risers using Kalman-like observers. Ocean Eng.
**2015**, 93, 84–97. [Google Scholar] [CrossRef] - Hammouri, H. Uniform observability and observer synthesis. In Nonlinear Observers and Applications; Besançon, G., Ed.; Springer: Berlin, Germany, 2007; pp. 35–70. [Google Scholar]
- Zhivomirov, H. Short-Time Fourier Transformation (STFT) with Matlab Implementation. Available online: https://www.mathworks.com/matlabcentral/fileexchange/45197-short-time-fourier-transformation--stft--with-matlab-implementation (accessed on 27 April 2018).
- Kušljević, M.D.; Tomić, J.J. Multiple-resonator-based power system Taylor-Fourier harmonic analysis. IEEE Trans. Instrum. Meas.
**2015**, 64, 554–563. [Google Scholar] [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Torres, L.; Jiménez-Cabas, J.; Gómez-Aguilar, J.F.; Pérez-Alcazar, P. A Simple Spectral Observer. *Math. Comput. Appl.* **2018**, *23*, 23.
https://doi.org/10.3390/mca23020023

**AMA Style**

Torres L, Jiménez-Cabas J, Gómez-Aguilar JF, Pérez-Alcazar P. A Simple Spectral Observer. *Mathematical and Computational Applications*. 2018; 23(2):23.
https://doi.org/10.3390/mca23020023

**Chicago/Turabian Style**

Torres, Lizeth, Javier Jiménez-Cabas, José Francisco Gómez-Aguilar, and Pablo Pérez-Alcazar. 2018. "A Simple Spectral Observer" *Mathematical and Computational Applications* 23, no. 2: 23.
https://doi.org/10.3390/mca23020023