A Sparse Representation Algorithm for Effective Photograph Retrieval
Abstract
:1. Introduction
- (1)
- In the proposed sparse representation framework, the sparse vector is firstly used to measure the similarity between the query photograph and dataset, rather than feature distance.
- (2)
- Unlike existing methods, which use feature-based sparse representation to build a dictionary for content-based image retrieval, we directly use the image features as a dictionary. If sparsity is the intrinsic quality of photograph retrieval, the feature is no longer critical.
- (3)
- The experimental result show that the proposed method is an effective, robust image and graph classification method and provides more accurate results.
2. Sparse Representation
3. Photograph-Retrieval Method Based on Sparse Representation
3.1. Image and Graph Feature
3.2. Photograph Retrieval via Sparse Representation Algorithm
3.2.1. Sparse Representation for Photograph Retrieval
3.2.2. Query Result Determination
3.2.3. Computational Complexity
4. Experimental Results
4.1. Parameter Setting in the Experiment
4.2. Experimental Result Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ji, R.; Duan, L.; Chen, J.; Yao, H.; Yuan, J.; Rui, Y.; Gao, W. Location Discriminative Vocabulary Coding for Mobile Landmark Search. Int. J. Comput. Vis. 2012, 96, 290–314. [Google Scholar] [CrossRef]
- Chio, J.-W.; Chen, S.-Y. Illustration Extraction from Video Streams. J. Pattern Recognit. Res. 2012, 7, 16. [Google Scholar] [CrossRef]
- Dimitrovski, I.; Kocev, D.; Kitanovski, I.; Loskovska, S.; Džeroski, S. Improved medical image modality classification using a combination of visual and textual features. Comput. Med. Imaging Graph. 2015, 39, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.B.; Li, S.; Chen, S.; Su, S.Z.; Duh, D.; Li, S.Z. Adaptive photograph retrieval method. Multimed. Tools Appl. 2014, 70, 2189–2209. [Google Scholar] [CrossRef]
- Li, S.A.; Chen, S.; Su, S.; Duh, D.; Li, S. Graphics/Image Retrieval Method. In Proceedings of the 2011 Conference on Technologies and Applications of Artificial Intelligence, Taoyuan, Taiwan, 11–13 November 2011.
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bosch, A.; Zisserman, A.; Munoz, X. Representing shape with a spatial pyramid kernel. In Proceedings of the 6th ACM International Conference on Image and Video Retrieval, Amsterdam, The Netherlands, 9–11 July 2007; Association for Computing Machinery: New York, NY, USA, 2007. [Google Scholar]
- Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 509–522. [Google Scholar] [CrossRef]
- Su, S.Z.; Chen, S.Y.; Li, S.Z.; Li, S.A.; Duh, D.J. Structured local binary Haar pattern for pixel-based graphics retrieval. Electron. Lett. 2010, 46, 996–998. [Google Scholar] [CrossRef]
- Naif, A.; Kamel, M.S.; Freeman, G.H. Geometry-based image retrieval in binary image databases. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1003–1013. [Google Scholar]
- Chi, Y.; Leung, M.K.H. ALSBIR: A local-structure-based image retrieval. Pattern Recognit. 2007, 40, 244–261. [Google Scholar] [CrossRef]
- Haibin, L.; Jacobs, D.W. Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 286–299. [Google Scholar]
- Liu, R.; Wang, Y.; Baba, T.; Masumoto, D. Shape detection from line drawings with local neighborhood structure. Pattern Recognit. 2010, 43, 1907–1916. [Google Scholar] [CrossRef]
- Foroughi, H.; Ray, N.; Zhang, H. Robust people counting using sparse representation and random projection. Pattern Recognit. 2015, 48, 3038–3052. [Google Scholar] [CrossRef]
- Rigamonti, R.; Brown, M.A.; Lepetit, V. Are sparse representations really relevant for image classification? In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011.
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Helor, Y.; Elad, M. A Shrinkage Learning Approach for Single Image Super-Resolution with Overcomplete Representations; Springer: Berlin/Heidelberg, Germany, 2010; pp. 622–635. [Google Scholar]
- Matan, P.; Michael, E. Image sequence denoising via sparse and redundant representations. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2009, 18, 27–35. [Google Scholar]
- Ortiz, E.G.; Becker, B.C. Face recognition for web-scale datasets. Comput. Vis. Image Underst. 2014, 118, 153–170. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, L.; Yang, J.; Zhang, D. Robust sparse coding for face recognition. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011.
- Peng, Y.; Ganesh, A.; Wright, J.; Xu, W.; Ma, Y. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 2233–2246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, Q.; Hua, G.; Jiang, S.; Gao, W.; Tian, Q. Building contextual visual vocabulary for large-scale image applications. In Proceedings of the International Conference on Multimedea 2010, Firenze, Italy, 25–29 October 2010.
- Srinivas, M.; Naidu, R.R.; Sastry, C.S.; Mohan, C.K. Content based medical image retrieval using dictionary learning. Neurocomputing 2015, 168, 880–895. [Google Scholar] [CrossRef]
- Mohamadzadeh, S.; Farsi, H. Content-based image retrieval system via sparse representation. Iet Comput. Vis. 2016, 10, 95–102. [Google Scholar] [CrossRef]
GIST | SR1 | Euclidean-NN2 | Cosine-NN2 | Correlation-NN2 | Chebychev-NN2 |
---|---|---|---|---|---|
Image (50) | 94.00% | 80.00% | 78.00% | 84.00% | 42.00% |
Graphics (50) | 94.00% | 78.00% | 80.00% | 84.00% | 76.00% |
Total | 94.00% | 79.00% | 79.00% | 84.00% | 59.00% |
PHOG | SR | Euclidean-NN | Cosine-NN | Correlation-NN | Chebychev-NN |
---|---|---|---|---|---|
Image (50) | 98.00% | 68.00% | 70.00% | 70.00% | 30.00% |
Graphics (50) | 88.00% | 22.00% | 22.00% | 22.00% | 84.00% |
Total | 93.00% | 45.00% | 46.00% | 46.00% | 16.00% |
Query Data | GIST-SR | PHOG-SR | [4] | [10] |
---|---|---|---|---|
Image (50) | 94.00% | 98.00% | 90.00% | 59.00% |
Graphics (50) | 94.00% | 88.00% | 74.00% | 77.73% |
Total | 94.00% | 93.00% | 82.00% | 68.81% |
Method | ||
---|---|---|
GIST-SR | 96.66% | 97.34% |
PHOG-SR | 96.16% | 96.84% |
[25] | 95.74% | 96.13% |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.-B.; Lei, Q.; Zhong, B.-N.; Du, J.-X.; Chen, D.-S. A Sparse Representation Algorithm for Effective Photograph Retrieval. Math. Comput. Appl. 2017, 22, 8. https://doi.org/10.3390/mca22010008
Zhang H-B, Lei Q, Zhong B-N, Du J-X, Chen D-S. A Sparse Representation Algorithm for Effective Photograph Retrieval. Mathematical and Computational Applications. 2017; 22(1):8. https://doi.org/10.3390/mca22010008
Chicago/Turabian StyleZhang, Hong-Bo, Qing Lei, Bi-Neng Zhong, Ji-Xiang Du, and Duan-Sheng Chen. 2017. "A Sparse Representation Algorithm for Effective Photograph Retrieval" Mathematical and Computational Applications 22, no. 1: 8. https://doi.org/10.3390/mca22010008
APA StyleZhang, H.-B., Lei, Q., Zhong, B.-N., Du, J.-X., & Chen, D.-S. (2017). A Sparse Representation Algorithm for Effective Photograph Retrieval. Mathematical and Computational Applications, 22(1), 8. https://doi.org/10.3390/mca22010008