Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems
Abstract
:1. Introduction
2. Notations and Lemmas
- (i)
- if is a solution of the LCP, then satisfies the implicit fixed-point equation
- (ii)
3. Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods
- (1)
- is a splitting for
- (2)
- is a nonnegative diagonal matrix, called weighting matrix;
- (3)
- , where I is the identity matrix.
4. Convergence Analysis
5. Numerical Experiments
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cottle, R.W.; Pang, J.-S.; Stone, R.E. The Linear Complementarity Problem; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Ferris, M.C.; Pang, J.-S. Engineering and economic applications of complementarity problems. SIAM. Rev. 1997, 39, 669–713. [Google Scholar] [CrossRef]
- Murty, K.G. Linear Complementarity, Linear and Nonlinear Programming; Heldermann: Berlin, Germany, 1997. [Google Scholar]
- O’ Leary, D.P.; White, R.E. Multisplittings of matrices and parallel solution of linear systems. SIAM J. Alg. Disc. Meth. 1985, 6, 630–640. [Google Scholar] [CrossRef]
- Bai, Z.-Z. On the convergence of the multisplitting methods for the linear complementarity problem. SIAM. J. Matrix Anal. Appl. 1999, 21, 67–78. [Google Scholar] [CrossRef]
- Bai, Z.-Z. The convergence of parallel iteration algorithms for linear complementarity problems. Comput. Math. Appl. 1996, 32, 1–17. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Evans, D.J. Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 1997, 63, 309–326. [Google Scholar] [CrossRef]
- Bai, Z.-Z. On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem. IMA J. Numer. Anal. 1998, 18, 509–518. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Evans, D.J. Matrix multisplitting methods with applications to linear complementarity problems: Parallel synchronous and chaotic methods. Reseaux Syst. Repartis Calculateurs Paralleles 2001, 13, 125–154. [Google Scholar] [CrossRef]
- Bai, Z.-Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 2010, 17, 917–933. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Zhang, L.-L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 2013, 62, 59–77. [Google Scholar] [CrossRef]
- Van Bokhoven, W.M.G. Piecewise-Linear Modelling and Analysis. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1981. [Google Scholar]
- Dong, J.-L.; Jiang, M.-Q. A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 2009, 16, 129–143. [Google Scholar] [CrossRef]
- Hadjidimos, A.; Tzoumas, M. Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 2009, 431, 197–210. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Ren, Z.-R. Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 2013, 26, 638–642. [Google Scholar] [CrossRef]
- Li, W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 2013, 26, 1159–1164. [Google Scholar] [CrossRef]
- Zhang, L.-T.; Li, J.-L. The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems. Comput. Math. Appl. 2014, 67, 1954–1959. [Google Scholar] [CrossRef]
- Zhang, L.-T.; Zuo, X.-Y.; Gu, T.-X.; Liu, X.-P. Improved convergence theorems of multisplitting methods for the linear complementarity problem. Appl. Math. Comput. 2014, 243, 982–987. [Google Scholar] [CrossRef]
- Zhang, L.-T.; Zhang, Y.-X.; Gu, T.-X.; Liu, X.-P.; Zhang, L.-W. New convergence of modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problems. Comput. Appl. Math. 2015. [Google Scholar] [CrossRef]
- Berman, A.; Plemmons, R.J. Nonnegative Matrices in the Mathematical Sciences; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Varga, R.S. Matrix Iterative Analysis; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Frommer, A.; Mayer, G. Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 1989, 119, 141–152. [Google Scholar] [CrossRef]
- Robert, F.; Charnay, M.; Musy, F. Iterations chaotiques serie-parallel pour des equations non-lineaires de point fixe. Aplikace Matematiky 1975, 20, 1–38. [Google Scholar]
- Young, D.M. Iterative Solution of Large Linear Systems; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Bai, Z.-Z.; Evans, D.J. Matrix multisplitting methods with applications to linear complementarity problems: Parallel asynchronous methods. Int. J. Comput. Math. 2002, 79, 205–232. [Google Scholar] [CrossRef]
- Zhang, L.-T.; Huang, T.-Z.; Cheng, S.-H.; Gu, T.-X. The weaker convergence of non-stationary matrix multisplitting methods for almost linear systems. Taiwan. J. Math. 2011, 15, 1423–1436. [Google Scholar]
- Bai, Z.-Z.; Zhang, L.-L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 2013, 20, 425–439. [Google Scholar] [CrossRef]
- Zhang, L.-T.; Huang, T.-Z.; Gu, T.-X. Global relaxed non-stationary multisplitting multi-parameter methods. Int. J. Comput. Math. 2008, 85, 211–224. [Google Scholar] [CrossRef]
Method | Description | Ref. | |
---|---|---|---|
MSMJ | Modulus-based synchronous | [27] | |
multisplitting Jacobi algorithm | |||
MSMGS | Modulus-based synchronous | [27] | |
multisplitting Gauss-Seidel algorithm | |||
MSMSOR | Modulus-based synchronous | [27] | |
multisplitting SOR algorithm | |||
MSMAOR | Modulus-based synchronous | [27] | |
multisplitting AOR algorithm | |||
MSMMAOR | or | Modulus-based synchronous | [17] |
multisplitting multi-parameters | |||
AOR algorithm | |||
GMSMMTOR | or | Global modulus-based | this paper |
synchronous multisplitting | |||
multi-parameter TOR algorithm | |||
where | |||
m | 20 | 30 | 40 | 50 | 60 | ||
---|---|---|---|---|---|---|---|
GMSMMAOR | IT | 22 | 22 | 22 | 22 | 22 | |
CPU | |||||||
Error | |||||||
MSMAOR | IT | 30 | 30 | 30 | 31 | 31 | |
CPU | |||||||
Error | |||||||
GMSMMAOR | IT | 19 | 19 | 19 | 19 | 19 | |
CPU | |||||||
Error | |||||||
MSMAOR | IT | 23 | 24 | 24 | 24 | 24 | |
CPU | |||||||
Error | |||||||
GMSMMAOR | IT | 17 | 17 | 17 | 17 | 17 | |
CPU | |||||||
Error | |||||||
MSMAOR | IT | 20 | 20 | 20 | 21 | 21 | |
CPU | |||||||
Error |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-T.; Gu, T.-X. Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems. Math. Comput. Appl. 2017, 22, 20. https://doi.org/10.3390/mca22010020
Zhang L-T, Gu T-X. Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems. Mathematical and Computational Applications. 2017; 22(1):20. https://doi.org/10.3390/mca22010020
Chicago/Turabian StyleZhang, Li-Tao, and Tong-Xiang Gu. 2017. "Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems" Mathematical and Computational Applications 22, no. 1: 20. https://doi.org/10.3390/mca22010020
APA StyleZhang, L.-T., & Gu, T.-X. (2017). Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems. Mathematical and Computational Applications, 22(1), 20. https://doi.org/10.3390/mca22010020